杜宾-瓦特森统计量,DW检验
Durbin-Watson 统计量是一种用于检测回归分析中残差序列自相关性的统计量,特别适用于时间序列数据。它由 James Durbin 和 Geoffrey Watson 于1950年提出,主要用于检验线性回归模型中的残差是否存在一阶自相关(即相邻误差项之间是否存在相关性)。该统计量的值范围从 0 到 4,其中:
- 值接近 2:表示残差间不存在显著的一阶自相关性,这是理想情况。
- 值小于 2:表明存在正向的一阶自相关性,即相邻误差倾向于同号。
- 值大于 2:意味着存在负向的一阶自相关性,即相邻误差倾向于异号。
具体来说,Durbin-Watson 统计量 D 的计算公式为:
其中:T 是观测次数;et 表示第 t 次观测对应的残差(预测值与实际值之差)。
应用场景
在时间序列分析中,确保残差是独立且不相关的非常重要,因为如果残差显示出某种模式或趋势,则说明模型未能充分捕捉到数据中的信息。因此,使用 Durbin-Watson 统计量可以帮助评估模型拟合的好坏,并指导我们改进模型结构或选择更合适的建模方法。