ubuntu18.04/ros下运行orb-slam3

博客介绍了在~/orb_slam3/examples_old/ros/orb_slam3路径下开启三个终端的操作,其中第一个终端运行roscore,未提及第二个和第三个终端的具体操作,涉及C++相关内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.在~/orb_slam3/examples_old/ros/orb_slam3下开启三个终端

2.第一个

roscore

3.第二个

source ~/ORB_SLAM3/Examples_old/ROS/ORB_SLAM3/build/devel/setup.bash

rosrun ORB_SLAM3 Mono ~/ORB_SLAM3/Vocabulary/ORBvoc.txt ~/ORB_SLAM3/Examples/ROS/ORB_SLAM3/Asus.yaml 

4.第三个

rosbag play ~/dataset/EuRoC/MH_01_easy.bag
<think>好的,我现在需要帮助用户解决在Ubuntu 18.04ROS环境中集成ORB-SLAM2和YOLO以实现语义建图的问题。首先,我需要理清楚用户的需求。用户已经具备基本的UbuntuROS环境,可能已经安装好了ORB-SLAM2,但需要结合YOLO进行语义建图。 首先,我应该回顾ORB-SLAM2和YOLO的基本工作原理。ORB-SLAM2是一个基于特征点的视觉SLAM系统,用于实时定位与地图构建。而YOLO是一个实时目标检测算法,可以识别图像中的物体并给出类别和位置。语义建图的目标是将YOLO检测到的物体语义信息(如类别标签)添加到ORB-SLAM2构建的地图中,使地图不仅包含几何信息,还有物体类别等语义信息。 接下来,我需要考虑如何将两者集成。可能的步骤包括:安装和配置YOLO,确保其能在ROS环境下运行;修改ORB-SLAM2的代码,使其能够接收YOLO的检测结果;设计数据通信机制,比如使用ROS的话题或服务来传递图像和检测结果;最后,将语义信息与地图点或关键帧关联,生成语义地图。 然后,我需要参考用户提供的引用内容,特别是引用[2]、[4]、[5],这些涉及到ORB-SLAM3的安装和ROS中的编译问题。用户可能遇到的问题可能包括依赖项安装、编译错误、节点生成失败等。例如,引用[5]提到找不到可执行文件的问题,这可能是因为编译过程中某些步骤未正确完成,需要检查CMakeLists.txt和编译命令。 接下来,我应该分步骤详细说明如何集成。首先,确保ORB-SLAM2在ROS中正确编译并运行,可能需要参考引用[5]中的解决方案处理编译错误。然后,安装YOLO的ROS版本,比如darknet_ros,这是一个将YOLO集成到ROS中的常用包。需要安装依赖项,下载源码,编译,并测试是否能正确发布检测结果。 然后,需要考虑数据同步的问题。ORB-SLAM2处理图像帧进行定位和建图,而YOLO处理同一帧进行物体检测。由于两者处理速度可能不同,可能需要使用ROS的message_filters库进行时间同步,确保同一时刻的图像帧和检测结果能够对应。 接下来,修改ORB-SLAM2的代码,添加订阅YOLO检测结果的订阅者,并在关键帧生成时将检测到的语义信息关联到地图点或关键帧中。可能需要修改地图数据结构,保存每个地图点的语义标签,或者在关键帧中添加元数据。 此外,还需要考虑如何可视化语义地图。可能需要使用Rviz或其他工具,将带有标签的地图点或物体边界框显示出来。 用户可能遇到的常见问题包括:依赖项冲突(如OpenCV版本,因为ORB-SLAM2可能需要特定版本的OpenCV,而YOLO可能依赖另一个版本),ROS话题通信问题,数据同步问题,以及编译错误。需要参考引用[3]中提到的VTK和PCL安装问题,确保点云库正确安装,因为语义建图可能涉及点云的生成和处理。 最后,生成相关问题,可能涉及性能优化、具体配置步骤、如何处理不同传感器数据、如何评估语义建图效果等。</think>### 在ROS环境下集成ORB-SLAM2与YOLO实现语义建图的步骤 #### 1. **环境准备** - **确认基础环境** 确保已正确安装Ubuntu 18.04ROS Melodic、ORB-SLAM2(ROS版本)[^5],并配置好OpenCV(建议3.2+)和PCL库[^3]。 - **安装YOLO相关依赖** 使用`darknet_ros`(ROS封装的YOLO版本): ```bash cd ~/catkin_ws/src git clone https://github.com/leggedrobotics/darknet_ros.git cd .. && catkin_make -DCATKIN_WHITELIST_PACKAGES="darknet_ros" ``` #### 2. **ORB-SLAM2与YOLO的通信** - **数据同步** 通过ROS的`message_filters`实现图像与检测结果的同步订阅: ```cpp // 在ORB-SLAM2代码中添加订阅者 message_filters::Subscriber<sensor_msgs::Image> rgb_sub(nh, "/camera/rgb/image_raw", 1); message_filters::Subscriber<darknet_ros_msgs::BoundingBoxes> yolo_sub(nh, "/darknet_ros/bounding_boxes", 1); typedef message_filters::sync_policies::ApproximateTime<sensor_msgs::Image, darknet_ros_msgs::BoundingBoxes> sync_policy; message_filters::Synchronizer<sync_policy> sync(sync_policy(10), rgb_sub, yolo_sub); sync.registerCallback(boost::bind(&SemanticMapper::callback, this, _1, _2)); ``` #### 3. **语义信息关联** - **修改ORB-SLAM2地图结构** 在`MapPoint`类中添加语义标签字段: ```cpp class MapPoint { public: std::string semantic_label; // 添加语义标签 // 其他原有成员... }; ``` - **关键帧关联检测结果** 在`KeyFrame`类中存储YOLO检测的物体边界框和类别: ```cpp class KeyFrame { public: std::vector<darknet_ros_msgs::BoundingBox> detected_objects; }; ``` #### 4. **语义地图生成** - **可视化与存储** 使用PCL库将带标签的点云保存为`pcd`文件,并在Rviz中显示语义信息: ```cpp pcl::PointCloud<pcl::PointXYZRGBL> cloud; for (auto &mp : map_points) { pcl::PointXYZRGBL point; point.x = mp->GetWorldPos().x; point.y = mp->GetWorldPos().y; point.z = mp->GetWorldPos().z; point.label = mp->semantic_label_id; // 标签ID映射 cloud.push_back(point); } pcl::io::savePCDFile("semantic_map.pcd", cloud); ``` #### 5. **常见问题解决** - **依赖冲突** 若OpenCV版本冲突,可在编译时指定路径(例如ORB-SLAM2使用OpenCV 3.2,YOLO使用OpenCV 4.x): ```bash cmake -DOpenCV_DIR=/usr/local/opencv3.2 .. ``` - **节点未生成** 检查`CMakeLists.txt`中是否添加了可执行文件生成指令[^5]: ```cmake add_executable(mono_node src/ros_mono.cc) target_link_libraries(mono_node ${PROJECT_NAME}) ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值