从之前发布的题型汇总及预测中,我们可以清晰地看出,Mathor Cup数学建模比赛尤为侧重于优化问题,这与近些年国赛的出题趋势不谋而合。所以,参加Mathor Cup比赛,无疑是为国赛进行实战演练的绝佳机会。
优化问题的备赛,可谓是“仁者见仁,智者见智”,说容易也容易,说难也难。容易之处在于,优化问题的数字化转化过程,就如同列方程一般,有迹可循。然而,难就难在运用算法进行编程求解。毕竟,想要在短时间内掌握一些高级算法,并非易事。不过,好在AI技术的飞速发展,似乎为我们解决了这一难题。
第一步:将题目精准转化为数学符号
快速掌握优化问题的最佳途径,就是研究往年的题目和优秀论文。我们先仔细研读往年的优化问题,这些问题主要涵盖目标函数、约束变量和决策变量。拿到题目后,先开动自己的脑筋,思考如何把实际问题转化为数学符号。随后,再去查看优秀论文,学习别人是如何表述的。这里的关键在于约束条件,约束条件的设定往往决定着最终优化结果的优劣。当我们成功列出方程和约束条件时,优化问题其实就已经完成了一半。
图中,公式10即为目标函数,11为决策变量,12为约束条件
第二步:编程求解大揭秘
完成了问题的数学转化后,接下来就进入编程求解阶段。对于较为简单的问题,我们可以学习使用MATLAB等软件的规划求解器,或者了解蒙特卡洛算法。而对于复杂一些的问题,就需要涉及智能算法了。像遗传算法、模拟退火算法、粒子群算法、蚁群算法等,这些都是比较经典的智能优化算法。近年来,新的智能优化算法更是不断涌现,我们可以挑选几个效果好的进行学习。一般来说,方程和约束条件越复杂,运用智能优化算法得到的结果就越理想。
第三步:做好收尾工作
在剩下的时间里,我们要做好两件事。一是整理竞赛模板,把常用的模型、算法和解题步骤整理成模板,方便在比赛时快速调用。二是提前签署竞赛承诺书,避免到最后因为时间紧张而手忙脚乱。
总结
1. 深入研究优秀论文,总结目标函数和约束条件的写法,提升问题转化能力。
2. 学习求解器的使用方法,或者掌握几种智能优化算法,为编程求解做好准备。
3. 认真整理竞赛模板,并提前签署承诺书,确保比赛过程顺利进行。
希望这些备赛经验希望能帮助大家在3天内高效备赛,在Mathor Cup数学建模比赛中取得优异成绩!