知识图谱在推荐系统中的应用全面调研

本文概述了知识图谱在推荐系统中的应用,包括基于嵌入、路径和统一方法的三大类别。这些方法利用知识图谱增强用户和项目表示,提高推荐的准确性和可解释性。嵌入方法通过KG嵌入学习用户和项目的表示;路径方法利用元路径和元图捕获实体间的语义相似性;统一方法结合了嵌入和路径信息,实现更全面的表示学习。研究还探讨了各种模型,如RippleNet、KGAT和KGCN等,并强调了这些方法的可解释性优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

超长文字预警… 本文是对《A Survey on Knowledge Graph-Based Recommender Systems》的简单总结,文章对近几年知识图谱在推荐系统中的应用做了较为详细的总结和讨论,希望可以给想要入坑的各位一点点启发。

Introduction

近几年,结合知识图谱和推荐系统的方向是一大热,知识图谱(KG)是一个异构图,其中节点作为实体,边表示实体之间的关系。Item及其属性可以映射到KG中,以了解item之间的相互关系[2]。此外,还可以将用户和用户侧信息集成到KG中,从而更准确地捕捉到用户和item之间的关系以及用户的偏好; 知识图谱另一大好处就是增强推荐系统的可解释性[14].
如下图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Marcus-Bao

万水千山总是情,只给五角行不行

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值