梯度下降原理及代码实现,以及正规方程解法+二者的比较

本文介绍了梯度下降法在机器学习中用于更新模型参数的作用,详细阐述了梯度、样本、特征、假设函数和代价函数等概念。重点讲解了线性回归的梯度下降算法步骤,包括求偏导、更新公式,并对比了批处理梯度下降与随机梯度下降。同时,文章提到了正规方程解法,给出了θ的计算公式,并指出梯度下降与正规方程的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

梯度下降法是机器学习算法更新模型参数的常用的方法之一。

相关概念
梯度 : 表示某一函数在一点处变化率最快的方向向量(可理解为这点的导数/偏导数)
样本 : 实际观测到的数据集,包括输入和输出(本文的样本数量用 m 表述,元素下标 i 表示)
特征 : 样本的输入(本文的特征数量用 n 表示,元素下标 j 表示)
假设函数 : 用来拟合样本的函数,记为 $ h_θ(X) (θ 为参数向量, X 为特征向量)$
代价函数 : 用于评估模型拟合的程度,训练的目标是最小化代价函数,记为 J ( θ ) J(θ) J(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Marcus-Bao

万水千山总是情,只给五角行不行

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值