人脸识别+数据采集+人脸特征提取(哈哈哈,绝决子)

人脸识别+数据采集+人脸特征提取(哈哈哈,绝绝子)

1.实验效果
  • 根据采集的照片进行特征提取识别出人,效果还不错

在这里插入图片描述


2.基本需要

python 3.6

dlib 19.7.0

pycharm

dlib下载可以去看我的这个python3.8+pycharm下载dlib(搞了好久,终于好了)_Hulk_liu的博客-CSDN博客_python下载dlib

哈哈哈,夸我,now,说完咱就开始把


3.开始实验
3.1人脸采集
import cv2
import dlib
import os
import sys
import random

# 存储位置
output_dir = './data/2***'  # 这里填编号+人名(例如1某某某,2某某)
size = 256  # 图片边长

if not os.path.exists(output_dir):
    os.makedirs(output_dir)


# 改变图片的亮度与对比度

def relight(img, light=1, bias=0):
    w = img.shape[1]
    h = img.shape[0]
    # image = []
    for i in range(0, w):
        for j in range(0, h):
            for c in range(3):
                tmp = int(img[j, i, c] * light + bias)
                if tmp > 255:
                    tmp = 255
                elif tmp < 0:
                    tmp = 0
                img[j, i, c] = tmp
    return img


# 使用dlib自带的frontal_face_detector作为我们的特征提取器
detector = dlib.get_frontal_face_detector()
# 打开摄像头 参数为输入流,可以为摄像头或视频文件
camera = cv2.VideoCapture(0)
# camera = cv2.VideoCapture('C:/Users/CUNGU/Videos/Captures/wang.mp4')

index = 1
while True:
    if (index <= 20):  # 存储15张人脸特征图像
        print('Being processed picture %s' % index)
        # 从摄像头读取照片
        success, img = camera.read()
        # 转为灰度图片
        gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # 使用detector进行人脸检测
        dets = detector(gray_img, 1)

        for i, d in enumerate(dets):
            x1 = d.top() if d.top() > 0 else 0
            y1 = d.bottom() if d.bottom() > 0 else 0
            x2 = d.left() if d.left() > 0 else 0
            y2 = d.right() if d.right() > 0 else 0

            face = img[x1:y1, x2:y2]
            # 调整图片的对比度与亮度, 对比度与亮度值都取随机数,这样能增加样本的多样性
            face = relight(face, random.uniform(0.5, 1.5), random.randint(-50, 50))

            face = cv2.resize(face, (size, size))

            cv2.imshow('image', face)

            cv2.imwrite(output_dir + '/' + str(index) + '.jpg', face)

            index += 1
        key = cv2.waitKey(30) & 0xff
        if key == 27:
            break
    else:
        print('Finished!')
        # 释放摄像头 release camera
        camera.release()
        # 删除建立的窗口 delete all the windows
        cv2.destroyAllWindows()
        break

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sDrIM8Jw-1649990042671)(人脸识别+数据采集+人脸特征提取(哈哈哈,绝决子).assets/image-20220415095436712.png)]

  • 这里获取一个人大概20个人脸,我大概采集了20多个人,效果也可以实现

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zENPzIab-1649990042671)(人脸识别+数据采集+人脸特征提取(哈哈哈,绝决子).assets/image-20220415095606679.png)]

3.2人脸特征提取
# 从人脸图像文件中提取人脸特征存入 CSV
# Features extraction from images and save into features_all.csv

# return_128d_features()          获取某张图像的128D特征
# compute_the_mean()              计算128D特征均值

from cv2 import cv2 as cv2
import os
import dlib
from skimage import io
import csv
import numpy as np

# 要读取人脸图像文件的路径
path_images_from_camera = "./data/"

# Dlib 正向人脸检测器
detector = dlib.get_frontal_face_detector()

# Dlib 人脸预测器
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

# Dlib 人脸识别模型
# Face recognition model, the object maps human faces into 128D vectors
face_rec = dlib.face_recognition_model_v1("dlib_face_recognition_resnet_model_v1.dat")


# 返回单张图像的 128D 特征
def return_128d_features(path_img):
    img_rd = io.imread(path_img)
    img_gray = cv2.cvtColor(img_rd, cv2.COLOR_BGR2RGB)
    faces = detector(img_gray, 1)

    print("%-40s %-20s" % ("检测到人脸的图像 / image with faces detected:", path_img), '\n')

    # 因为有可能截下来的人脸再去检测,检测不出来人脸了
    # 所以要确保是 检测到人脸的人脸图像 拿去算特征
    if len(faces) != 0:
        shape = predictor(img_gray, faces[0])
        face_descriptor = face_rec.compute_face_descriptor(img_gray, shape)
    else:
        face_descriptor = 0
        print("no face")

    return face_descriptor


# 将文件夹中照片特征提取出来, 写入 CSV
def return_features_mean_personX(path_faces_personX):
    features_list_personX = []
    photos_list = os.listdir(path_faces_personX)
    if photos_list:
        for i in range(len(photos_list)):
            with open("./feature/featuresGiao"+str(i)+".csv", "w", newline="") as csvfile:
                writer = csv.writer(csvfile)
            # 调用return_128d_features()得到128d特征
                print("%-40s %-20s" % ("正在读的人脸图像 / image to read:", path_faces_personX + "/" + photos_list[i]))
                features_128d = return_128d_features(path_faces_personX + "/" + photos_list[i])
                print(features_128d)
                writer.writerow(features_128d)
            # 遇到没有检测出人脸的图片跳过
                if features_128d == 0:
                    i += 1
                else:
                    features_list_personX.append(features_128d)
    else:
        print("文件夹内图像文件为空 / Warning: No images in " + path_faces_personX + '/', '\n')

    # 计算 128D 特征的均值
    # N x 128D -> 1 x 128D
    if features_list_personX:
        features_mean_personX = np.array(features_list_personX).mean(axis=0)
    else:
        features_mean_personX = '0'

    return features_mean_personX


# 读取某人所有的人脸图像的数据
people = os.listdir(path_images_from_camera)
people.sort()

with open("./feature/features_all.csv", "w", newline="") as csvfile:
    writer = csv.writer(csvfile)
    for person in people:
        print("##### " + person + " #####")
        # Get the mean/average features of face/personX, it will be a list with a length of 128D
        features_mean_personX = return_features_mean_personX(path_images_from_camera + person)
        writer.writerow(features_mean_personX)
        print("特征均值 / The mean of features:", list(features_mean_personX))
        print('\n')
    print("所有录入人脸数据存入 / Save all the features of faces registered into: ./feature/features_all2.csv")

  • 这一步会讲特征提取放到feature里面,然后就会有几个特征的csv文件
  • 在这里插入图片描述
3.2人脸识别
# 摄像头实时人脸识别
#coding:utf-8
import os
import dlib  # 人脸处理的库 Dlib
import csv  # 存入表格
import time
import sys
import numpy as np  # 数据处理的库 numpy
from cv2 import cv2 as cv2  # 图像处理的库 OpenCv
import pandas as pd  # 数据处理的库 Pandas

# 人脸识别模型,提取128D的特征矢量
# face recognition model, the object maps human faces into 128D vectors
# Refer this tutorial: http://dlib.net/python/index.html#dlib.face_recognition_model_v1
facerec = dlib.face_recognition_model_v1(
    "dlib_face_recognition_resnet_model_v1.dat")


# 计算两个128D向量间的欧式距离
# compute the e-distance between two 128D features
def return_euclidean_distance(feature_1, feature_2):
    feature_1 = np.array(feature_1)
    feature_2 = np.array(feature_2)
    dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
    return dist


# 处理存放所有人脸特征的 csv
path_features_known_csv = "./features_all.csv"
csv_rd = pd.read_csv(path_features_known_csv, header=None)

# 用来存放所有录入人脸特征的数组
# the array to save the features of faces in the database
features_known_arr = []

# 读取已知人脸数据
# print known faces
for i in range(csv_rd.shape[0]):
    features_someone_arr = []
    for j in range(0, len(csv_rd.loc[i, :])):
        features_someone_arr.append(csv_rd.loc[i, :][j])
    features_known_arr.append(features_someone_arr)
print("Faces in Database:", len(features_known_arr))

# Dlib 检测器和预测器
# The detector and predictor will be used
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')

# 创建 cv2 摄像头对象
# cv2.VideoCapture(0) to use the default camera of PC,
# and you can use local video name by use cv2.VideoCapture(filename)
cap = cv2.VideoCapture(0)