卷积神经网络三类主体层的理解(重点在全连接层)
前段时间一直忙美赛➕过年,太久没碰cv和神经网络了,今天看了看笔记和文献and blog,就想自己用markdownpad做个笔记,随便来这儿献个丑
更新:这学期又恰好要学冈萨雷斯的数字图像处理,就加入了一些和传统数字图像处理的联系
三个部分以及CNN与传统图像处理的联系
①卷积层(conv)——————>用于提取特征
事实上,卷积层对应传统数字图像处理里的局部增强和空间滤波,即对一个像素点的邻域(如3x3的kernel_size就是处理一个像素点的3x3邻域)
特别地,1x1卷积是一种特殊的卷积,他是用来更改通道数目的,事实上,1x1 卷积一般用来替代全连接层,这样就免除了全连接层对输入图像尺寸的限制(这也是FCN的基本思想)
下面列举一些我知道的1x1卷积的用途:1.瓶颈层 2.channel-wise fully-connected(这个出现在Context Encoder论文里,其实和全连接层差不多,也是排除了位置信息的差异做全局统筹考虑) 3.更改feature map的channels数目
②池化层(pooling)——————>用于特征选择(也叫下采样)
③全连接层(fc(fully connected)层)———————>用于整合全局信息进行分类
事实上,在CNN中,激活函数所作的就是一种灰度变换(若针对灰度图像,RGB同理),例如,sigmoid激活函数就是让灰度值在一个范围内差异很大,在另一个范围内差异很小
如果是sgn符号函数做激活函数,就实现了灰度图像到二值图像的转换
每个部分的作用
1.卷积层(一种特殊的全连接层)
首先谈谈卷积层,事实上,卷积层和全连接层是可以相互转换的,卷积层就是进行①局部连接、②权值共享的进行特征提取的全连接层