卷积神经网络三类主体层的理解(重点在全连接层(已加入一些与传统图像处理的联系))


前段时间一直忙美赛➕过年,太久没碰cv和神经网络了,今天看了看笔记和文献and blog,就想自己用markdownpad做个笔记,随便来这儿献个丑

更新:这学期又恰好要学冈萨雷斯的数字图像处理,就加入了一些和传统数字图像处理的联系

三个部分以及CNN与传统图像处理的联系

卷积层(conv)——————>用于提取特征

事实上,卷积层对应传统数字图像处理里的局部增强和空间滤波,即对一个像素点的邻域(如3x3的kernel_size就是处理一个像素点的3x3邻域)

特别地,1x1卷积是一种特殊的卷积,他是用来更改通道数目的,事实上,1x1 卷积一般用来替代全连接层,这样就免除了全连接层对输入图像尺寸的限制(这也是FCN的基本思想)

下面列举一些我知道的1x1卷积的用途:1.瓶颈层 2.channel-wise fully-connected(这个出现在Context Encoder论文里,其实和全连接层差不多,也是排除了位置信息的差异做全局统筹考虑) 3.更改feature map的channels数目

池化层(pooling)——————>用于特征选择(也叫下采样)

全连接层(fc(fully connected)层)———————>用于整合全局信息进行分类

事实上,在CNN中,激活函数所作的就是一种灰度变换(若针对灰度图像,RGB同理),例如,sigmoid激活函数就是让灰度值在一个范围内差异很大,在另一个范围内差异很小

如果是sgn符号函数做激活函数,就实现了灰度图像到二值图像的转换

每个部分的作用

1.卷积层(一种特殊的全连接层)

首先谈谈卷积层,事实上,卷积层和全连接层是可以相互转换的,卷积层就是进行①局部连接、②权值共享的进行特征提取的全连接层

<think>首先,用户的问题是:“我想了解卷积神经网络的基本概念原理 请问CNN卷积神经网络简介及其工作原理”。所以,我需要基于提供的引用材料,构建一个清晰的回答。 引用材料总结: - [^1]: CNN的核心思想是局部感受野、权值共享时间或空间亚采样,提供位移、尺度、形变不变性。三大特色:局部感知、权重共享多卷积核。 - [^2]: CNN是一种前馈神经网络,由卷积层池化组成,特别在图像处理方面出色。传统神经网络相比,CNN加入卷积层池化,使特征学习更有效。 - [^3]: CNN全连接神经网络区别:至少有一个卷积层提取特征;神经元局部连接权值共享,减少参数数量,加快训练。 - [^4]: CNN通过寻找低级特征(如边缘曲线)逐步构建抽象概念来分类图像。 - [^5]: CNN架构包括卷积层、非线性变换(如ReLU)、池化全连接层。卷积核被训练以敏感于不同特征。 回答结构: - 由于用户要求“回答结构清晰,帮助用户逐步解决问题”,我需要组织成一个逻辑流。 - 步骤: 1. 简介:什么是CNN? 2. 基本概念:局部感知、权重共享、多卷积核。 3. 工作原理:卷积层、池化、非线性变换、全连接层。 4. 传统神经网络区别。 5. 为什么CNN在图像处理中有效。 系统级指令: - 所有行内数学表达式用$...$,例如:$x^2$。 - 独立公式用$$...$$并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题(在末尾)。 - 引用的段落末尾添加引用标识,例如:[^1]。 - 回答中引用材料时,自然地添加引用。 用户可见: - 确保回答真实可靠,基于引用材料。 回答大纲: 1. **引言**:定义CNN及其重要性。 2. **核心思想**:解释局部感知、权重共享多卷积核。 3. **架构工作原理**: - 卷积层:如何提取特征。 - 非线性变换(如ReLU)。 - 池化:亚采样。 - 全连接层:分类。 4. **传统神经网络的比较**:强调局部连接权值共享的优势。 5. **总结**:简要重申工作原理。 生成相关问题: - 在末尾添加相关问题,基于用户可能感兴趣的点。 数学表达式: - 如果有数学内容,用LaTeX格式。例如,卷积操作可以用$*$表示,如$f * g$。 - 在引用中,没有太多数学,但可以适当添加。 引用处理: - 当引用材料时,在句子末尾添加[^数字]。例如,根据引用[^1],CNN的核心思想是... - 确保引用自然。 最终回答结构: - 开头:直接回答问题。 - 主体:分点解释。 - 结尾:总结。 - 然后:相关问题。</think>### CNN卷积神经网络简介及工作原理 卷积神经网络(Convolutional Neural Network,CNN)是一种专门用于处理图像、语音等网格结构数据的深度学习模型。它通过模拟人类视觉系统的工作方式,高效地提取特征并进行分类或识别。CNN的核心优势在于其对图像中的平移、缩放形变具有不变性,使其在计算机视觉任务中表现出色[^1]。下面我将逐步介绍CNN的基本概念原理,帮助您清晰理解。 #### 1. **基本概念** CNN的核心思想基于三个关键结构:局部感受野、权值共享时间或空间亚采样。这些概念共同作用,使CNN能高效学习特征: - **局部感知(Local Receptive Fields)**:传统神经网络使用全连接层,每个神经元连接所有输入像素。而CNN的神经元仅连接输入图像的局部区域(称为感受野),例如一个3×3或5×5的小窗口。这模拟了人类视觉只关注图像局部细节的特性,减少了计算量[^1][^3]。 - **权重共享(Weight Sharing)**:在卷积层中,同一卷积核(filter)被应用于输入图像的所有位置。这意味着卷积核的参数在整个图像上共享,大大降低了模型参数数量(例如,从数百万减少到几千),提高了训练效率[^1][^3]。数学上,这相当于一个卷积操作:如果输入为$I$,卷积核为$K$,则输出特征图为$O = I * K$,其中$*$表示卷积运算。 - **多卷积核(Multiple Convolutional Kernels)**:CNN使用多个不同的卷积核来提取多样化的特征。每个卷积核专注于检测特定模式,如边缘、纹理或形状。例如,一个卷积核可能检测垂直边缘,另一个检测水平边缘。这允许模型捕捉图像的丰富信息[^1][^4]。 这些概念使CNN能自动学习图像的次特征:从低级特征(如边缘曲线)逐步构建到高级抽象特征(如物体部件或整体形状)[^4]。 #### 2. **工作原理** CNN的工作原理通过多架构实现,主要包括卷积层、非线性变换、池化全连接层。下面以图像分类为例,说明其工作流程: - **卷积层(Convolutional Layer)**:这是CNN的核心,负责特征提取。每个卷积核在输入图像上滑动(步长可调),计算局部区域的加权,生成特征图(feature map)。例如,输入一个猫的图像,卷积核可能输出一个表示“边缘”的特征图。数学上,对于一个输入矩阵$X$,卷积操作可表示为: $$ O_{i,j} = \sum_{m} \sum_{n} X_{i+m,j+n} \cdot K_{m,n} $$ 其中$K$是卷积核权重。通过训练,卷积核被优化以敏感于特定特征(如猫的爪子或狗的耳朵)[^5][^4]。 - **非线性变换(Activation Layer)**:在卷积后,通常会添加一个非线性激活函数,如ReLU(Rectified Linear Unit),定义为$f(x) = \max(0, x)$。这引入非线性,使模型能学习复杂模式。例如,ReLU确保负值输出为零,增强特征图的稀疏性[^5]。 - **池化(Pooling Layer)**:该进行空间亚采样(downsampling),减少特征图尺寸参数数量,同时保留重要信息。常用最大池化(Max Pooling),它在局部区域(如2×2窗口)取最大值。这提供位移不变性,即物体在图像中轻微移动不影响识别[^1][^3]。例如,一个2×2最大池化可将特征图尺寸减半。 - **全连接层(Fully Connected Layer)**:在最后几,特征图被展平为一维向量,并通过全连接层进行分类。全连接层使用类似传统神经网络的权重矩阵,输出概率分布(如“猫”或“狗”的概率)。损失函数(如交叉熵)用于训练,通过反向传播优化所有参数[^2][^5]。 整个流程是端到端的:输入图像→卷积层(提取低级特征)→池化(压缩)→重复卷积池化(提取高级特征)→全连接层(分类)。训练时,CNN通过梯度下降调整卷积核权重,最小化预测误差。 #### 3. **传统神经网络的比较** CNN传统神经网络(如全连接网络)的关键区别在于: - CNN至少有一个卷积层用于特征提取,而传统网络仅依赖全连接层[^3]。 - CNN通过局部连接权值共享大幅减少参数数量(例如,减少90%以上),加速训练并降低过拟合风险[^2][^3]。 - 这使得CNN能处理高维数据(如图像),而传统网络在图像任务中计算成本高且效果差[^2]。 #### 4. **总结** CNN的工作原理是利用局部感知、权重共享多卷积核,通过卷积层提取特征、池化压缩数据、非线性变换增强表达能力,最终由全连接层完成分类。这种架构赋予CNN对图像变化的鲁棒性,使其成为图像识别、目标检测等领域的基石[^1][^4]。如果您有具体应用场景(如猫狗分类),可以进一步讨论实现细节。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值