【Preprocessing数据预处理】之Skewness

在机器学习和统计学中,偏度(Skewness)指的是实值随机变量(Variables)的概率分布的不对称性的度量。本质上,它表明分布与正态分布的偏离程度,正态分布是对称的,没有偏度。偏度可以分为两种类型:

- 正偏度(Postive Skewness or Right Skewness):也称为右偏度,发生在分布的右侧尾部比左侧长或更厚时。在这种分布中,均值和中位数将大于众数。

- 负偏度(Nagative Skewness or Left Skewness):也称为左偏度,发生在分布的左侧尾部比右侧长或更厚时。在这些分布中,均值和中位数将小于众数。

处理偏度很重要,因为许多机器学习模型假设特征遵循正态分布。

偏度以几种方式影响模型训练,主要是因为许多机器学习算法对数据分布有基本假设。以下是解决偏度重要性的几个原因:

1. 正态性假设
许多算法,特别是基于线性模型的算法,假设特征遵循正态分布。像线性回归、逻辑回归和线性判别分析这样的算法假设每个特征都遵循高斯分布(正态分布)。偏度违反了这一假设,可能导致模型性能不佳。

2. 模型准确性
偏态数据会影响模型的准确性。例如,在正偏态分布中,异常值的存在或向右的长尾可能导致模型偏向于更高的值,误表示数据的实际情况。这可能导致对较低端值的预测不准确,特别是对值的预测。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值