DBSCAN(基于密度的空间聚类应用噪声)是数据挖掘和机器学习中一个流行的聚类算法。与K-Means这样的划分方法不同,DBSCAN特别擅长于识别数据集中各种形状和大小的聚类,包括存在噪声和离群点的情况。
以下是DBSCAN工作原理的概述:
1. 核心概念:
- Epsilon (ε):距离参数,指定点周围邻域的半径。
- 最小点数 (MinPts):形成密集区域所需的最小点数,这将被视为一个聚类。
2. 过程:
- 算法从数据集中随机选择一个点开始。然后,它识别所有在ε距离内的点,形成一个邻域。
- 如果一个点的ε-邻域包含至少MinPts,这个点被标记为**核心点**。如果不是,但它位于一个核心点的ε-邻域内,它被标记为**边界点**。否则,它被认为是**噪声**。
- 接下来,对于每个核心点,如果它尚未被分配到一个聚类中,就创建一个新的聚类。然后,所有在其ε-邻域内的点都被添加到这个聚类中。这一步骤被递归地应用于新形成聚类中的所有点。
- 这个过程重复进行,直到所有点要么被分配到一个聚类中,要么被标记为噪声。
3. 优点:
- 形状和大小的灵活性:DBSCAN可以找到各种形状和大小的聚类,与假设聚类是球形的K-Means不同。
- 处理噪声:它能有效地识别和分离噪声或离群点。
- 最小输入参数:只需要两个参数(ε和MinPts),尽管选择它们的值有时可能是个挑战。
4. 缺点:
- 参数敏感性:DBSCAN的结果