- 博客(4)
- 收藏
- 关注
原创 BEV基础:相机内外参学习
在自动驾驶和多传感器系统中,相机外参矩阵(Extrinsic Matrix) 和 内参矩阵(Intrinsic Matrix) 是描述相机几何属性的核心参数。以下是它们的详细说明和计算方法:作用:将 相机坐标系 中的3D点投影到 图像像素坐标系。K=[fx0cx0fycy001]K=fx000fy0cxcy1参数含义:fx,fyfx,fy:焦距(像素单位),与物理焦距 ff 的关系:fx=f⋅mxfx=f⋅mx(mxmx 是像素/毫米的转换系数)cx,cycx,cy:主点(P
2025-04-27 17:35:17
1135
原创 腾讯云服务器复现BEV感知-LSS:Lift, Splat, Shoot
因自己电脑配置不够用,本想在网上租用云服务器,无意间发现了腾讯提供的免费云服务器,于是尝试了下如何在云服务器部署LSS项目。云服务器准备:注册腾讯云,新增电脑(模板选择pytorch),开机,这些需在网上自行学习。去官网下载nuscenes mini数据集和下载最新的Map expansion。一切OK,去pytroch官网安装对应cuda的版本。官网给的是谷歌网盘,下载很慢。我在CSDN找到的资源。【用lidar结果验证】【评估模型的IOU】
2025-04-27 15:44:09
1123
原创 权重文件和预训练模型介绍
权重文件:权重文件保存的是神经网络模型中各个神经元之间连接的权重参数。在神经网络训练过程中,模型会根据输入数据不断调整这些权重值,以使得模型的输出尽可能接近真实标签。训练完成后,这些权重值就被保存到权重文件中。权重文件通常只包含模型的参数,不包含模型的结构信息。常见的权重文件格式有.h5(用于 Keras 模型)、.pth(用于 PyTorch 模型)等。预训练模型:预训练模型是指在大规模数据集上进行过训练的模型。这些数据集通常包含大量的图像、文本或其他类型的数据。
2025-04-24 16:41:59
396
原创 TensorFlow 和 PyTorch 的区别
综上所述,TensorFlow 更适合工业界的大规模应用和部署,而 PyTorch 则在学术界和快速原型开发方面具有优势。
2025-04-24 16:16:44
1747
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人