TensorFlow2.x 学习笔记(二)回归问题&分类问题

本文深入探讨了机器学习中的核心概念,包括回归与分类问题,介绍了线性回归、逻辑回归等算法,并讨论了如ReLU激活函数和交叉熵损失函数等关键组件。同时,通过MNIST手写数字识别数据集实例,展示了从输入到输出的完整流程,包括图像分类和预测离散值的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fθ:x→yf_{\theta}: x\rightarrow yfθ:xy
yyy通常可以分为两类:离散或连续
连续时为回归问题
linear regression
loss function
gradient descent
loss surface
convex Optimization

  • linear regression
    • linear Regression
    • logistic Regression
    • Classification

回归问题实战

  • 线性回归

  • 离散值预测

    • Image Classificaton

      • ImageNet
      • MNIST
        • Hand-written Digits Recognition
        • 7000 images per category
        • train/test:60k/10k
    • Input and Output

      • flatten
        • matrix to vector
      • one-hot
        • ∑p(y=i∣x)=1\sum{p(y = i | x)} = 1p(y=ix)=1
  • Regression vs Classification

    • y∈Rdy \in R^dyRd
    • y[i]=p(y=i∣x)y[i] = p(y = i| x)y[i]=p(y=ix)
  • unlinear

    • ReLU
  • hidden layer stack

  • Loss

    • MSE(out, label)
    • Cross Entropy
  • GPU speedup!

  • Enjoy MNIST!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值