YOLOv8改进 | 有效涨点 | 使用PRCV2024(Oral) MAF-YOLO中的尺度融合方式MAFPN改进YOLOv8的Neck

本文介绍

为提升 YOLOv8 在目标检测任务中的特征表达能力,本文借鉴 PRCV2024(Oral) MAF-YOLO 所提出的尺度融合方式MAFPN改进YOLOv8的Neck部分。 在MAFPN中,设计了表面辅助融合(SAF)模块,以将Backbone网络的输出与Neck网络相结合,保留适量的浅层信息以促进后续学习。同时,高级辅助融合(AAF)模块深植于Neck网络内,向输出层传递更为丰富的梯度信息。 实验结果如下(本文通过VOC数据验证算法性能,epoch为100,batchsize为32,imagesize为640*640):

ModelmAP50-95mAP50run time (h)params (M)interence time (ms)
YOLOv80.5490.7601.0513.010.2+0.3(postprocess)
YOLO110.5530.7571.1422.590.2+0.3(postprocess)
YOLOv8_MAFPN-C2f0.5600.7701.1332.990.3+0.3(postprocess)

在这里插入图片描述

重要声明:本文改进后代码可能只是并不适用于我所使用的数据集,对于其他数据集可能存在有效性。

本文改进是为了降低最新研究进展至YOLO的代码迁移难度,从而为对最新研究感兴趣的同学提供参考。

代码迁移

重点内容

步骤一:迁移代码

ultralytics框架的模块代码主要放在ultralytics/nn文件夹下,此处为了与官方代码进行区分,可以新增一个extra_modules文件夹,然后将我们的代码添加进入。

具体代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as F
from itertools import repeat
import collections.abc
# from ..modules import Conv

class Conv(nn.Module):
    '''Normal Conv with SiLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size = 1, stride = 1, groups=1, bias=False):
        super().__init__()
        padding = kernel_size // 2
        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            bias=bias,
        )
        self.bn = nn.BatchNorm2d(out_channels)
        self.act = nn.SiLU()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
            return tuple(x)
        return tuple(repeat(x, n))
    return parse


to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple

def get_conv2d_uni(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias,
               attempt_use_lk_impl=True):
    kernel_size = to_2tuple(kernel_size)
    if padding is None:
        padding = (kernel_size[0] // 2, kernel_size[1] // 2)
    else:
        padding = to_2tuple(padding)
    need_large_impl = kernel_size[0] == kernel_size[1] and kernel_size[0] > 5 and padding == (kernel_size[0] // 2, kernel_size[1] // 2)

    # if attempt_use_lk_impl and need_large_impl:
    #     print('---------------- trying to import iGEMM implementation for large-kernel conv')
    #     try:
    #         from depthwise_conv2d_implicit_gemm import DepthWiseConv2dImplicitGEMM
    #         print('---------------- found iGEMM implementation ')
    #     except:
    #         DepthWiseConv2dImplicitGEMM = None
    #         print('---------------- found no iGEMM. use original conv. follow https://github.com/AILab-CVC/UniRepLKNet to install it.')
    #     if DepthWiseConv2dImplicitGEMM is not None and need_large_impl and in_channels == out_channels \
    #             and out_channels == groups and stride == 1 and dilation == 1:
    #         print(f'===== iGEMM Efficient Conv Impl, channels {in_channels}, kernel size {kernel_size} =====')
    #         return DepthWiseConv2dImplicitGEMM(in_channels, kernel_size, bias=bias)
    return nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
                     padding=padding, dilation=dilation, groups=groups, bias=bias)

def get_bn(channels):
    return nn.BatchNorm2d(channels)

def fuse_bn(conv, bn):
    kernel = conv.weight
    running_mean = bn.running_mean
    running_var = bn.running_var
    gamma = bn.weight
    beta = bn.bias
    eps = bn.eps
    std = (running_var + eps).sqrt()
    t = (gamma / std).reshape(-1, 1, 1, 1)
    return kernel * t, beta - running_mean * gamma / std

def convert_dilated_to_nondilated(kernel, dilate_rate):
    identity_kernel = torch.ones((1, 1, 1, 1), dtype=kernel.dtype, device =kernel.device )
    if kernel.size(1) == 1:
        #   This is a DW kernel
        dilated = F.conv_transpose2d(kernel, identity_kernel, stride=dilate_rate)
        return dilated
    else:
        #   This is a dense or group-wise (but not DW) kernel
        slices = []
        for i in range(kernel.size(1)):
            dilated = F.conv_transpose2d(kernel[:,i:i+1,:,:], identity_kernel, stride=dilate_rate)
            slices.append(dilated)
        return torch.cat(slices, dim=1)

def merge_dilated_into_large_kernel(large_kernel, dilated_kernel, dilated_r):
    large_k = large_kernel.size(2)
    dilated_k = dilated_kernel.size(2)
    equivalent_kernel_size = dilated_r * (dilated_k - 1) + 1
    equivalent_kernel = convert_dilated_to_nondilated(dilated_kernel, dilated_r)
    rows_to_pad = large_k // 2 - equivalent_kernel_size // 2
    merged_kernel = large_kernel + F.pad(equivalent_kernel, [rows_to_pad] * 4)
    return merged_kernel

class DilatedReparamBlock(nn.Module):
    """
    Dilated Reparam Block proposed in UniRepLKNet (https://github.com/AILab-CVC/UniRepLKNet)
    We assume the inputs to this block are (N, C, H, W)
    """
    def __init__(self, channels, kernel_size, deploy, use_sync_bn=False, attempt_use_lk_impl=True):
        super().__init__()
        self.lk_origin = get_conv2d_uni(channels, channels, kernel_size, stride=1,
                                    padding=kernel_size//2, dilation=1, groups=channels, bias=deploy,
                                    )
        self.attempt_use_lk_impl = attempt_use_lk_impl

        #   Default settings. We did not tune them carefully. Different settings may work better.
        # if kernel_size == 17:
        #     self.kernel_sizes = [5, 9, 3, 3, 3]
        #     self.dilates = [1, 2, 4, 5, 7]
        # elif kernel_size == 15:
        #     self.kernel_sizes = [5, 7, 3, 3, 3]
        #     self.dilates = [1, 2, 3, 5, 7]
        # elif kernel_size == 13:
        #     self.kernel_sizes = [5, 7, 3, 3, 3]
        #     self.dilates = [1, 2, 3, 4, 5]
        # elif kernel_size == 11:
        #     self.kernel_sizes = [5, 5, 3, 3, 3]
        #     self.dilates = [1, 2, 3, 4, 5]
        # elif kernel_size == 9:
        #     self.kernel_sizes = [5, 5, 3, 3]
        #     self.dilates = [1, 2, 3, 4]
        # elif kernel_size == 7:
        #     self.kernel_sizes = [5, 3, 3, 3]
        #     self.dilates = [1, 1, 2, 3]
        # elif kernel_size == 5:
        #     self.kernel_sizes = [3, 3, 1]
        #     self.dilates = [1, 2, 1]
        # elif kernel_size == 3:
        #     self.kernel_sizes = [3, 1]
        #     self.dilates = [1, 1]
        if kernel_size == 17:
            self.kernel_sizes = [5, 9, 3, 3, 3]
            self.dilates = [1, 2, 4, 5, 7]
        elif kernel_size == 15:
            self.kernel_sizes = [5, 7, 3, 3, 3]
            self.dilates = [1, 2, 3, 5, 7]
        elif kernel_size == 13:
            self.kernel_sizes = [5, 7, 3, 3, 3]
            self.dilates = [1, 2, 3, 4, 5]
        elif kernel_size == 11:
            self.kernel_sizes = [5, 5, 3, 3, 3]
            self.dilates = [1, 2, 3, 4, 5]
        elif kernel_size == 9:
            self.kernel_sizes = [7, 5, 3]
            self.dilates = [1, 1, 1]
        elif kernel_size == 7:
            self.kernel_sizes = [5, 3]
            self.dilates = [1, 1]
        elif kernel_size == 5:
            self.kernel_sizes = [3, 1]
            self.dilates = [1, 1]
        elif kernel_size == 3:
            self.kernel_sizes = [3, 1]
            self.dilates = [1, 1]
        

        else:
            raise ValueError('Dilated Reparam Block requires kernel_size >= 5')

        if not deploy:
            self.origin_bn = get_bn(channels)
            for k, r in zip(self.kernel_sizes, self.dilates):
                self.__setattr__('dil_conv_k{}_{}'.format(k, r),
                                 nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=k, stride=1,
                                           padding=(r * (k - 1) + 1) // 2, dilation=r, groups=channels,
                                           bias=False))
                self.__setattr__('dil_bn_k{}_{}'.format(k, r), get_bn(channels))

    def forward(self, x):
        if not hasattr(self, 'origin_bn'):      # deploy mode
            return self.lk_origin(x)
        out = self.origin_bn(self.lk_origin(x))
        for k, r in zip(self.kernel_sizes, self.dilates):
            conv = self.__getattr__('dil_conv_k{}_{}'.format(k, r))
            bn = self.__getattr__('dil_bn_k{}_{}'.format(k, r))
            out = out + bn(conv(x))
        return out

    def merge_dilated_branches(self):
        if hasattr(self, 'origin_bn'):
            origin_k, origin_b = fuse_bn(self.lk_origin, self.origin_bn)
            for k, r in zip(self.kernel_sizes, self.dilates):
                conv = self.__getattr__('dil_conv_k{}_{}'.format(k, r))
                bn = self.__getattr__('dil_bn_k{}_{}'.format(k, r))
                branch_k, branch_b = fuse_bn(conv, bn)
                origin_k = merge_dilated_into_large_kernel(origin_k, branch_k, r)
                origin_b += branch_b
            merged_conv = get_conv2d_uni(origin_k.size(0), origin_k.size(0), origin_k.size(2), stride=1,
                                    padding=origin_k.size(2)//2, dilation=1, groups=origin_k.size(0), bias=True,
                                    attempt_use_lk_impl=self.attempt_use_lk_impl)
            merged_conv.weight.data = origin_k
            merged_conv.bias.data = origin_b
            self.lk_origin = merged_conv
            self.__delattr__('origin_bn')
            for k, r in zip(self.kernel_sizes, self.dilates):
                self.__delattr__('dil_conv_k{}_{}'.format(k, r))
                self.__delattr__('dil_bn_k{}_{}'.format(k, r))

class UniRepLKNetBlock(nn.Module):

    def __init__(self,
                 dim,
                 kernel_size,
                 deploy=False,
                 attempt_use_lk_impl=True):
        super().__init__()
        if deploy:
            print('------------------------------- Note: deploy mode')
        if kernel_size == 0:
            self.dwconv = nn.Identity()
        elif kernel_size >= 3:
            self.dwconv = DilatedReparamBlock(dim, kernel_size, deploy=deploy,
                                              attempt_use_lk_impl=attempt_use_lk_impl)
        else:
            assert kernel_size in [3]
            self.dwconv = get_conv2d_uni(dim, dim, kernel_size=kernel_size, stride=1, padding=kernel_size // 2,
                                     dilation=1, groups=dim, bias=deploy,
                                     attempt_use_lk_impl=attempt_use_lk_impl)

        if deploy or kernel_size == 0:
            self.norm = nn.Identity()
        else:
            self.norm = get_bn(dim)


    def forward(self, inputs):

        out = self.norm(self.dwconv(inputs))
        return out

class DepthBottleneckUni(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 shortcut=True,
                 kersize = 5,
                 expansion_depth = 1,
                 small_kersize = 3,
                 use_depthwise=True):
        super(DepthBottleneckUni, self).__init__()


        mid_channel = int(in_channels * expansion_depth)
        self.conv1 = Conv(in_channels, mid_channel, 1)
        self.shortcut = shortcut
        if use_depthwise:
            self.conv2 = UniRepLKNetBlock(mid_channel, kernel_size=kersize)
            self.act = nn.SiLU()
            self.one_conv = Conv(mid_channel,out_channels,kernel_size = 1)
        else:
            self.conv2 = Conv(out_channels, out_channels, 3, 1)

    def forward(self, x):
        y = self.conv1(x)
        
        y = self.act(self.conv2(y))
        # y = self.conv2(y)
        
        y = self.one_conv(y)
        return y

class RepHDW(nn.Module):
    def __init__(self, in_channels, out_channels, depth=1, shortcut = True, expansion = 0.5, kersize = 5,depth_expansion = 1,small_kersize = 3,use_depthwise = True):
        super(RepHDW, self).__init__()
        c1 = int(out_channels * expansion) * 2
        c_ = int(out_channels * expansion)
        self.c_ = c_
        self.conv1 = Conv(in_channels, c1, 1, 1)
        self.m = nn.ModuleList(DepthBottleneckUni(self.c_, self.c_, shortcut,kersize,depth_expansion,small_kersize,use_depthwise) for _ in range(depth))
        self.conv2 = Conv(c_ * (depth+2), out_channels, 1, 1)

    def forward(self,x):
        x = self.conv1(x)
        x_out = list(x.split((self.c_, self.c_), 1))
        for conv in self.m:
            y = conv(x_out[-1])
            x_out.append(y)
        y_out = torch.cat(x_out, axis=1)
        y_out = self.conv2(y_out)
        return  y_out

步骤二:创建模块并导入

此时需要在当前目录新增一个__init__.py文件,将添加的模块导入到__init__.py文件中,这样在调用的时候就可以直接使用from extra_modules import *__init__.py文件需要撰写以下内容:

from .maf_yolo import RepHDW

具体目录结构如下图所示:

nn/
└── extra_modules/
    ├── __init__.py
    └── maf_yolo.py

步骤三:修改tasks.py文件

首先在tasks.py文件中添加以下内容:

from ultralytics.nn.extra_modules import *

然后找到parse_model()函数,在函数查找如下内容:

        if m in base_modules:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)

使用较老ultralytics版本的同学,此处可能不是base_modules,而是相关的模块的字典集合,此时直接添加到集合即可;若不是就找到base_modules所指向的集合进行添加,添加方式如下:

    base_modules = frozenset(
        {
            Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck,
            SPP, SPPF, C2fPSA, C2PSA, DWConv, Focus, BottleneckCSP, C1, C2, C2f, C3k2,
            RepNCSPELAN4, ELAN1, ADown, AConv, SPPELAN, C2fAttn, C3, C3TR, C3Ghost,
            torch.nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3, PSA, SCDown, C2fCIB,
            A2C2f,
            # 自定义模块
            RepHDW,
        }
    )

其次找到parse_model()函数,在函数查找如下内容:

            if m in repeat_modules:
                args.insert(2, n)  # number of repeats
                n = 1

base_modules同理,具体添加方式如下:

    repeat_modules = frozenset(  # modules with 'repeat' arguments
        {
            BottleneckCSP, C1, C2, C2f, C3k2, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3,
            C2fPSA, C2fCIB, C2PSA, A2C2f,
            # 自定义模块
            RepHDW,
        }
    )

步骤四:修改配置文件

在相应位置添加如下代码即可。

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9

# YOLOv8.0n head
head:
  - [6, 1, Conv, [256, 3, 2]] # 10-P5/32
  - [[-1, 9], 1, Concat, [1]] # 11
  - [-1, 1, RepHDW, [512, False, 0.5, 9, 3]] # 12-P5/32

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]] # 13-P4/16
  - [4, 1, Conv, [128, 3, 2]] # 14-P4/16
  - [[-1, -2, 6], 1, Concat, [1]] # 15
  - [-1, 1, RepHDW, [512, False, 0.5, 7, 3]] # 16-P4/16

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]] # 17-P3/8
  - [2, 1, Conv, [64, 3, 2]] # 18-P3/8
  - [[-1, -2, 4], 1, Concat, [1]] # 19
  - [-1, 1, RepHDW, [256, False, 0.5, 5, 3]] # 20-P3/8

  - [[17, -1], 1, Concat, [1]] # 21
  - [-1, 1, RepHDW, [256, False, 0.5, 5, 3]] # 22-P3/8

  - [20, 1, Conv, [256, 3, 2]] # 23-P4/16
  - [22, 1, Conv, [256, 3, 2]] # 24-P4/16
  - [[-1, -2, 16, 13], 1, Concat, [1]] # 25-P4/16
  - [-1, 1, RepHDW, [512, False, 0.5, 7, 3]] # 26-P4/16

  - [16, 1, Conv, [512, 3, 2]] # 27-P5/32
  - [26, 1, Conv, [512, 3, 2]] # 28-P5/32
  - [[-1, -2, 12], 1, Concat, [1]] # 29-P5/32
  - [-1, 1, RepHDW, [512, False, 0.5, 9,  3]] # 30-P5/32

  - [[22, 26, 30], 1, Detect, [nc]] # Detect(P3, P4, P5)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值