在开发和优化RAG系统时,需要对检索组件的效果进行量化评估。信息检索领域有一系列经典指标可用于衡量检索质量,常见的包括Recall@K、MRR和nDCG等。
- Recall@K(前K名召回率):衡量在每个查询的前K个检索结果中,包含了多少相关文档,占该查询所有相关文档的比例。通俗地说,就是对于一个查询,如果总共有R篇真正相关的文档,而我们的检索Top K中找到了r篇,那么Recall@K = r/R。在开放域问答中,通常R=1(只有包含答案的那篇文档算相关),此时Recall@K更简单地表示前K结果中有无命中答案。Recall@K非常重要,因为