自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(469)
  • 收藏
  • 关注

原创 【人工智能】人工智能的数学基础

人工智能(AI)的学习路线通常分为几个阶段,涉及数学基础、编程技能、机器学习、深度学习以及相关工具的掌握。本文是对数学基础部分的整理和总结,目前不断学习整理更新中.....

2024-11-12 10:43:43 351

原创 【机器学习】机器学习中用到的高等数学知识

机器学习是一个跨学科领域,涉及多种高等数学知识。掌握这些高等数学知识可以帮助理解机器学习算法的工作原理和实现过程。在实际应用中,建议结合编程实践,如使用 Python 中的 NumPy 和 SciPy 库进行线性代数和数值计算,使用 scikit-learn 进行统计分析和机器学习建模。通过理论与实践相结合,能够更深入地理解机器学习的核心概念和应用。

2024-11-07 09:38:28 784

原创 人工智能学习路线

人工智能学习的过程是循序渐进的,先打好数学和编程基础,然后逐步深入机器学习和深度学习,最后通过实际项目和工具框架的使用巩固知识。

2024-10-30 14:08:07 833 1

原创 【漫话机器学习系列】229.特征缩放对梯度下降的影响(The Effect Of Feature Scaling Gradient Descent)

在机器学习和深度学习中,梯度下降是最常用的优化算法之一。然而,很多人在训练模型时会遇到收敛速度慢、训练不稳定的问题,其中一个重要原因就是特征未进行适当的缩放。

2025-04-28 10:52:35 453

原创 【漫话机器学习系列】228.丢弃对于隐含单元的影响(The Effect Of Dropout On Hidden Units)

在深度学习中,Dropout(随机失活)是一种非常常见且有效的正则化技术,广泛应用于防止神经网络的过拟合。今天,我们结合一张来自 Chris Albon 的图,来详细解读一下 Dropout 对神经网络中隐藏单元(hidden units)的具体影响。

2025-04-28 10:46:49 576

原创 【漫话机器学习系列】227.信息检索与数据挖掘中的常用加权技术(TF-IDF)

在自然语言处理(NLP)、信息检索(IR)和数据挖掘(DM)领域中,TF-IDF 是一种非常经典且常用的加权技术。无论是搜索引擎排序、文本挖掘,还是特征工程,TF-IDF都扮演着重要角色。

2025-04-27 09:38:06 656

原创 【漫话机器学习系列】226.测试集、训练集、验证集(test,training,validation sets)

在机器学习或深度学习中,合理划分和使用训练集、验证集与测试集,是保证模型开发科学性和最终效果的基石。尤其在大模型训练和工业应用中,一个细小的划分失误,就可能导致模型上线后性能大幅下降。

2025-04-27 09:32:47 657

原创 【漫话机器学习系列】225.张量(Tensors)

在机器学习和深度学习领域,无论是使用 TensorFlow、PyTorch 还是其他框架,我们都会频繁遇到一个术语:张量(Tensor)。但很多初学者对张量的理解只停留在“好像是数组?”的阶段。实际上,张量既简单又强大,它是支撑现代深度学习系统的基础。

2025-04-26 09:29:57 738

原创 【漫话机器学习系列】224.双曲正切激活函数(Hyperbolic Tangent Activation Function)

在构建神经网络时,激活函数是非常关键的一环。本文将带大家深入了解一种常见但常被忽视的激活函数:双曲正切函数(Hyperbolic Tangent Function,简称 tanh)。通过图解和数学表达,我们来剖析它的性质及在实际中的应用。

2025-04-26 09:16:44 419

原创 【漫话机器学习系列】223. T 统计量(t-statistics)

在统计学与机器学习的建模过程中,我们常常会遇到一个非常关键的统计量——T 统计量(t-statistics)。它是进行假设检验的基础之一,尤其在检验某个参数是否显著时扮演着核心角色。T 统计量是用来对一个参数是否与某个理论值(通常是 0)显著不同进行检验的一种统计量。简而言之,它衡量的是“我们估计出来的参数和理论值之间的偏离,是否足够大到可以认为这个参数是显著的”。

2025-04-25 10:55:07 588

原创 【漫话机器学习系列】222.SVM 的径向基函数核(SVC Radioal Basis Function Kernel)

本文通过一张经典的手绘图(来自 Chris Albon)来深入讲解支持向量机(SVM)中的非线性核方法之一——径向基函数核(RBF Kernel)。如果你曾疑惑“核函数到底在做什么?”“它真的能解决非线性问题吗?”,那么本文会给你一个直观、形象的答案!

2025-04-25 10:54:44 889

原创 【漫话机器学习系列】220.支持向量机的软间隔分类(Soft-Margin SVM Classification)

支持向量机(SVM)是一种经典的监督学习方法,特别适用于小样本、高维度的数据分类任务。相比于硬间隔 SVM,软间隔 SVM(Soft-Margin SVM)更适合处理现实中常见的、不可完全线性可分的数据。本篇文章将结合一张手绘图,深入浅出地讲解软间隔 SVM 的目标函数、核心变量及其含义。

2025-04-24 09:13:43 619

原创 【漫话机器学习系列】221.支持向量(Support Vectors)

SVM 并不是一个“黑盒模型”,其决策边界是完全由少数的支持向量决定的。理解支持向量的概念,有助于我们深入理解 SVM 的学习机制、优化方式,以及它在实际工程中的表现。在模型调优时,比如使用 soft-margin SVM 或核 SVM,支持向量的变化也能直观反映模型的复杂度与过拟合程度。

2025-04-24 09:13:11 986

原创 【漫话机器学习系列】219.支持向量机分类器(Support Vector Classifier)

在机器学习的分类模型中,支持向量机(Support Vector Machine,SVM)是一种功能强大且广泛应用的监督学习算法。它尤其擅长解决小样本、高维度的数据问题,并且对结果具有较好的泛化能力。本文将结合一张手绘图,通俗而深入地讲解 SVM 中的核心概念 —— 支持向量分类器(Support Vector Classifier)。

2025-04-23 12:16:18 901

原创 【漫话机器学习系列】218.监督学习 vs 非监督学习(Supervised VS Unsupervised)

在机器学习领域,“监督学习(Supervised Learning)”和“非监督学习(Unsupervised Learning)”是最基础、也是最常用的两大类方法。很多初学者刚接触这些概念时容易混淆,本篇将结合图像内容,用简单通俗的语言,帮助你快速建立起直觉理解。

2025-04-23 12:12:05 848

原创 【漫话机器学习系列】217.监督式深度学习的核心法则(Supervised Deep Learning Rule Of Thumb)

在进行深度学习项目时,我们常常面临一个核心问题:我到底需要多少训练数据?这是许多初学者甚至资深工程师都会困惑的问题。图中给出了一个非常实用的“监督式深度学习样本数量经验法则”,可以作为我们评估数据需求时的参考依据。

2025-04-22 12:27:19 1656

原创 【漫话机器学习系列】215.处理高度不平衡数据策略(Strategies For Highly Imbalanced Classes)

在机器学习与数据挖掘任务中,“类别不平衡”问题几乎无处不在。无论是信用卡欺诈检测、医疗异常诊断,还是网络攻击识别,正负样本的比例往往严重失衡。比如一个欺诈检测数据集中,可能只有不到 1% 的交易是欺诈行为。

2025-04-22 12:21:18 932

原创 【漫话机器学习系列】216.应对高方差(过拟合)的策略详解(Strategies When You Have High Variance)

在机器学习的建模过程中,我们常常会面对一种令人头疼的问题——过拟合(Overfitting)。过拟合的本质是模型对训练数据“记得太多”,导致在新数据上表现不佳,也就是所谓的高方差问题(High Variance)。那么,如何有效应对这一问题呢?本文将基于 Chris Albon 总结的思维导图,深入探讨几种常见且有效的技术手段。

2025-04-21 12:01:58 676

原创 【漫话机器学习系列】214.停用词(Stop Words)

在处理自然语言数据时,我们常常会遇到一个看似简单却至关重要的步骤——移除停用词(Stop Words)。本文将深入探讨停用词的概念、为什么要移除它们、常见的停用词有哪些,以及它们在自然语言处理(NLP)中的应用。

2025-04-21 11:50:27 764

原创 【漫话机器学习系列】213.随机梯度下降(SGD)

在现代机器学习训练中,梯度下降(Gradient Descent)是优化模型参数最核心的算法之一,而其中的“随机梯度下降(SGD)”则是高效处理大规模数据的关键技术。本文通过一张直观手绘图,拆解随机梯度下降背后的数学逻辑、更新机制和执行流程,帮助你用最清晰的方式理解这个看似简单却至关重要的优化策略。

2025-04-20 09:08:20 767

原创 【漫话机器学习系列】212.词干(Stemming Words)

在自然语言处理(NLP)中,我们经常遇到一个任务:如何将形态各异的单词转化为“标准形式”以便分析?**词干提取(Stemming)**就是实现这一目标的一种基础技术手段。如图所示,词干提取是指通过削减单词的某些部分(如词缀)来获得它的“词根”或“词干(stem)”。这项技术尽管可能会影响词语的可读性,却能大大提高文本处理时的可比性和归一性。

2025-04-20 09:07:54 791

原创 【漫话机器学习系列】211.驻点(Stationary Points)

在数学分析、机器学习优化、物理建模等领域中,驻点(Stationary Points)是一个非常重要的概念。它们是函数图像中“停下来的点”,即导数为零的点,往往也是我们寻找极值(最大值、最小值)或判断函数走向变化的关键。

2025-04-19 12:36:41 1033

原创 【漫话机器学习系列】210.标准化(Standardization)

在数据科学与机器学习的实践中,标准化(Standardization)是一项极为常见且重要的预处理操作。它可以显著提升模型训练的效率与效果,尤其是在涉及距离计算(如KNN、SVM)或梯度下降的算法中。本文将通过图示公式,深入剖析标准化的定义、计算方法及其应用背景。

2025-04-19 12:36:26 1052

原创 【漫话机器学习系列】209.均值的标准误差(Standard Error of the Mean)

在统计学中,我们经常会遇到“均值的标准误差”这个概念,英文称为 Standard Error of the Mean(简称 SEM)。它是对样本均值作为总体均值估计的可靠程度的一种度量。今天我们就通过一张手绘风格的图像,一起深入理解这个重要的统计量。

2025-04-18 10:38:23 1027

原创 【漫话机器学习系列】208.标准差(Standard Deviation)

标准差(Standard Deviation)是统计学中最常用的描述性指标之一,它衡量的是一组数据的离散程度,即数据相对于平均值的波动程度。理解标准差不仅是学习统计的基础,也对数据分析、机器学习、科学研究等领域具有重要意义。

2025-04-18 10:38:01 709

原创 【漫话机器学习系列】207.平方根(Square Root)

在数学学习中,平方根(Square Root)是一个非常基础但又非常重要的概念,广泛应用于代数、几何、概率等多个领域。本文将以图文方式,结合“r次方根”的定义,深入浅出地理解平方根的含义。

2025-04-17 09:28:29 352

原创 【漫话机器学习系列】206.稀疏性(Sparsity)

在数据科学、机器学习、线性代数等多个领域中,矩阵是一个常见而基础的数学工具。而在处理大型矩阵时,我们经常会遇到“稀疏矩阵”(Sparse Matrix)。稀疏性(Sparsity)正是描述一个矩阵中“有多少是零元素”的一个重要概念。理解和利用稀疏性,有助于我们提升数据存储效率、加速运算过程。

2025-04-17 09:26:51 810

原创 【漫话机器学习系列】205.度(夹角)(Span)

在学习线性代数的过程中,我们经常会遇到“张成空间(Span)”这个概念。对于初学者而言,这个词听起来抽象又遥远,甚至容易混淆于“维度”、“线性无关”这些概念中。今天我们就借助一张生动直观的手绘图,来全面理解“张成空间”的几何意义,并从图中扩展出一个更常见的问题:向量之间的夹角(或称“度”)在空间中的角色。

2025-04-16 09:27:57 667

原创 【漫话机器学习系列】204.不确定性的来源(Sources Of Uncertainty)

在数据科学、机器学习、甚至哲学中,我们常常会面对一个核心问题:不确定性。无论是预测天气、疾病发展,还是评估人工智能的决策,不确定性始终存在。

2025-04-16 09:27:25 802

原创 Firebase Studio 使用介绍:您的 AI 赋能全栈开发环境

Firebase Studio 作为 Google 推出的新一代云端开发平台,通过集成强大的 AI 功能,极大地简化了全栈应用程序的开发流程。它不仅提供了一个熟悉的、基于浏览器的集成开发环境,还支持多种语言和框架,并能与 Firebase 生态系统中的其他服务无缝协作。无论是快速原型设计、AI 赋能应用开发,还是高效的团队协作和一键部署,Firebase Studio 都展现出巨大的潜力。

2025-04-15 13:11:56 961

原创 【漫话机器学习系列】203.参数 VS 超参数(parameters VS hyperparameters)

在机器学习中,"参数"(parameters)和"超参数"(hyperparameters)是两个非常基础却又容易混淆的概念。理解它们的区别和作用,是深入掌握机器学习的第一步。

2025-04-15 10:47:53 750

原创 【漫话机器学习系列】202.参数共享(Parameter Sharing)

在深度学习中,尤其是卷积神经网络(CNN)中,有一个非常关键却常被忽视的设计思想,那就是——参数共享(Parameter Sharing)。这一机制不仅大大减少了模型需要学习和存储的参数数量,还提高了模型的泛化能力和运算效率。本文将深入探讨什么是参数共享、它的数学基础、应用实例、实现方式以及它带来的优势。

2025-04-15 10:45:27 1370

原创 【漫话机器学习系列】201.正则化的参数范数惩罚(Parameter Norm Penalties for Regularization)

正则化(Regularization)最早源于统计学和机器学习的研究,用于解决模型的过拟合(Overfitting)问题。过拟合是指模型在训练集上表现很好,但在测试集上效果很差,泛化能力弱。

2025-04-14 09:53:38 769

原创 【漫话机器学习系列】200.过度拟合(Overfitting)

过度拟合(Overfitting)是指机器学习模型在训练数据上表现得非常好,但在新数据(测试集)上的表现很差。原因是模型把训练数据的特征甚至噪声都记住了,导致泛化能力差。过度拟合是机器学习模型中的重要陷阱。它提醒我们:模型不在于追求训练集的完美拟合,而在于对未知数据的良好预测。

2025-04-14 09:27:07 283

原创 【漫话机器学习系列】199.过拟合 vs 欠拟合(Overfit vs Underfit)

拟合(Fit)是指模型对数据的学习效果。理想目标:在训练集上效果好在测试集上效果也好不复杂、不简单,恰到好处过拟合是指模型在训练集上表现很好,但在测试集或新数据上效果很差。模型学到了“噪声”或“异常值”的特征。欠拟合是指模型太简单,无法捕捉数据的有效规律,无论在训练集还是测试集上效果都不好。项目过拟合欠拟合决策边界复杂简单偏差Bias低高方差Variance高低表现训练好,测试差训练差,测试差。

2025-04-13 09:32:19 732

原创 【漫话机器学习系列】198.异常值(Outlier)

异常值(Outlier)是指那些在数据集中远离其他观测值的点,通常与数据的整体趋势明显不同,可能源于错误、噪声、特殊事件或极端情况。

2025-04-13 09:31:47 652

原创 【漫话机器学习系列】197.外核(Out of Core)

Out of Core(外核计算)指的是:当数据集太大,内存放不下时,通过将数据分批(或按行、按块)从磁盘中读取到内存,进行分段计算或增量学习的一类技术手段。

2025-04-12 08:54:21 909

原创 【漫话机器学习系列】196.袋外数据误差(Out-of-Bag Error, OOB Error)

在随机森林(Random Forest)或Bagging(自助采样)模型中,模型训练过程中会使用Bootstrap抽样(有放回抽样)来构建每一棵子模型的训练集。

2025-04-12 08:54:04 779

原创 【漫话机器学习系列】195.最小二乘法(Ordinary Least Squares, OLS)

最小二乘法(Ordinary Least Squares, 简称 OLS)是统计学和机器学习中最常见的线性回归方法之一。它的核心思想非常简单直白:找一条最合适的直线,使得所有点到这条直线的“垂直距离”的平方和最小。这条“最合适的直线”其实就是我们想要的模型。最小二乘法是一种「简单但强大」的算法。它是理解机器学习回归模型的基础,具有重要的理论与实战意义。一句话总结:通过最小化预测值和真实值之间误差的平方和,找到一条最适合数据的线。

2025-04-11 08:58:51 1030

原创 【漫话机器学习系列】194.“一对其余”逻辑回归(One-Vs-Rest Logistic Regression)

One-Vs-Rest 逻辑回归 = 把多分类问题转化为多个二分类问题,简单、直观,适用于小类别场景,是机器学习入门多分类的首选思路之一。

2025-04-11 08:58:27 334

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除