- 向量(Vector)和矩阵(Matrix):用于表示数据集(Dataset)和特征(Feature)。
- 矩阵运算:加法、乘法和逆矩阵(Inverse Matrix)等,用于计算模型参数。
- 特征值(Eigenvalues)和特征向量(Eigenvectors):用于降维(dimensionality reduction)(如主成分分析 PCA(Principal Component Analysis))和理解数据结构。
- 奇异值分解 (SVD):用于数据降维和矩阵近似。
向量和矩阵
向量
向量是线性代数中的一个基本概念,它是具有大小和方向的数学对象。向量在物理学、工程学、计算机科学和许多其他领域中都有广泛的应用。以下是向量的基本概念、性质和应用。
1. 向量的定义
向量可以用有序的数值集合来表示,通常写作 或
。在
-维空间中,一个向量可以表示为:
这里, 是向量的分量。
2. 向量的类型
向量可以根据其特征进行分类:
位置向量的用途
表示点的位置:可以用位置向量确定一个点在空间中的具体位置。
计算点间距离:两个点的距离可以通过它们的相对位置向量计算,例如 。
空间变换:位置向量可以用于描述平移、旋转等空间操作。
示例
若点 的坐标为
,则其位置向量为:
若点 在三维空间中的坐标为
,则其位置向量为:
位置向量的使用使得我们可以将几何问题转化为向量运算,使得计算更为简洁和直观。
- 零向量:是向量空间中的特殊向量,它的所有分量都为零。零向量通常用符号
表示,在任意维度的向量空间中都存在。例如:
在二维空间中,零向量为:
在
-维空间中,零向量为:
零向量的特点是无方向、无长度,它在向量加法中是单位元,添加到任何向量上都不会改变其值。 - 单位向量:模(长度)为 1 的向量,通常用于表示方向,单位向量的符号通常为
,
,
或加上帽子符号的其它向量符号。下面是一些常见的单位向量示例:
二维空间中的单位向量:
沿-轴方向的单位向量:
沿-轴方向的单位向量:
三维空间中的单位向量:
沿-轴方向的单位向量:
沿-轴方向的单位向量:
沿-轴方向的单位向量:
任意向量的单位化: 对于任意非零向量
,可以通过将它除以其模长
来获得单位向量:
例如,如果
,则它的模长为 5,单位向量为:
单位向量在多种计算中都很有用,尤其是表示方向,而不关注大小。
- 位置向量(Position Vector):表示空间中一个点的位置的向量,它通常从坐标系的原点
指向该点
,可以表示点的相对位置。位置向量是非常有用的工具,尤其在几何、物理学和工程中,用于描述物体的位置。
位置向量的定义
在二维和三维空间中,位置向量常以从原点到目标点的矢量形式表示。若点
二维空间中的位置向量: 若的坐标为
或
,则位置向量
为:
,则位置向量为:
三维空间中的位置向量: 若,则位置向量为:
3. 向量的运算
向量之间可以进行多种运算,包括:
-
向量加法:将两个相同维数的向量相加,对应分量相加。
-
向量减法:将两个相同维数的向量相减,对应分量相减。