【机器学习】机器学习中用到的高等数学知识-1.线性代数 (Linear Algebra)

  • 向量(Vector)和矩阵(Matrix):用于表示数据集(Dataset)和特征(Feature)。
  • 矩阵运算:加法、乘法和逆矩阵(Inverse Matrix)等,用于计算模型参数。
  • 特征值(Eigenvalues)和特征向量(Eigenvectors):用于降维(dimensionality reduction)(如主成分分析 PCA(Principal Component Analysis))和理解数据结构。
  • 奇异值分解 (SVD):用于数据降维和矩阵近似。

向量和矩阵

向量

向量是线性代数中的一个基本概念,它是具有大小和方向的数学对象。向量在物理学、工程学、计算机科学和许多其他领域中都有广泛的应用。以下是向量的基本概念、性质和应用。

1. 向量的定义

向量可以用有序的数值集合来表示,通常写作 \mathbf{v}\vec{v}。在 n-维空间中,一个向量可以表示为:

\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}

这里,v_1, v_2, \ldots, v_n​ 是向量的分量。

2. 向量的类型

向量可以根据其特征进行分类:

      位置向量的用途
         表示点的位置
:可以用位置向量确定一个点在空间中的具体位置。
         计算点间距离:两个点的距离可以通过它们的相对位置向量计算,例如 \|\mathbf{OP}_1 - \mathbf{OP}_2\|
         空间变换:位置向量可以用于描述平移、旋转等空间操作。

      示例
         若点 A 的坐标为 (3, 4),则其位置向量为:

                                                           \mathbf{OA} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}

         若点 B 在三维空间中的坐标为 (1, -2, 5),则其位置向量为:

                                                        \mathbf{OB} = \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix}                                                    

       位置向量的使用使得我们可以将几何问题转化为向量运算,使得计算更为简洁和直观。

  • 零向量:是向量空间中的特殊向量,它的所有分量都为零。零向量通常用符号 \mathbf{0} 表示,在任意维度的向量空间中都存在。例如:
     

    在二维空间中,零向量为:

    \mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

    n-维空间中,零向量为:

    \mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}
    零向量的特点是无方向、无长度,它在向量加法中是单位元,添加到任何向量上都不会改变其值。
  • 单位向量:模(长度)为 1 的向量,通常用于表示方向,单位向量的符号通常为 \hat{i}, \hat{j}​, \hat{k} 或加上帽子符号的其它向量符号。下面是一些常见的单位向量示例:
     

    二维空间中的单位向量:
        沿 x-轴方向的单位向量:
                                                         \hat{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
        沿 y-轴方向的单位向量:
                                                        \hat{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
    三维空间中的单位向量
        沿 x-轴方向的单位向量:
                                                        \hat{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
        沿 y-轴方向的单位向量:
                                                        \hat{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}
        沿 z-轴方向的单位向量:
                                                        \hat{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}

    任意向量的单位化: 对于任意非零向量 \mathbf{v},可以通过将它除以其模长 \|\mathbf{v}\| 来获得单位向量:

                                                       \hat{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|}

    例如,如果 \mathbf{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix},则它的模长为 5,单位向量为:

                                         ​​​  \hat{\mathbf{v}} = \frac{1}{5} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.8 \end{bmatrix}

    单位向量在多种计算中都很有用,尤其是表示方向,而不关注大小。

  • 位置向量(Position Vector):表示空间中一个点的位置的向量,它通常从坐标系的原点 O 指向该点 P,可以表示点的相对位置。位置向量是非常有用的工具,尤其在几何、物理学和工程中,用于描述物体的位置。
     

    位置向量的定义

    在二维和三维空间中,位置向量常以从原点到目标点的矢量形式表示。若点 P 的坐标为 (x, y)(x, y, z),则位置向量 \mathbf{OP} 为:

        二维空间中的位置向量: 若 P = (x, y),则位置向量为:

                                                       \mathbf{OP} = \begin{bmatrix} x \\ y \end{bmatrix}

        三维空间中的位置向量: 若 P = (x, y, z),则位置向量为:

                                                       \mathbf{OP} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}

3. 向量的运算

向量之间可以进行多种运算,包括:

  • 向量加法:将两个相同维数的向量相加,对应分量相加。

    \mathbf{u} + \mathbf{v} = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{pmatrix}
  • 向量减法:将两个相同维数的向量相减,对应分量相减。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值