Sigmoid 函数是一种常用的激活函数,尤其在神经网络和逻辑回归中扮演重要角色。它将输入的实数映射到区间 (0, 1),形状类似于字母 "S"。
1. 定义与公式
Sigmoid 函数的公式为:
特点
- 输出范围:(0, 1),适合用于概率预测。
- 单调性:是一个单调递增函数。
- 对称性:以 x = 0 为中心,对称于 y = 0.5。
2.Sigmoid 函数的推导过程
2-1. 目标与需求
我们希望构造一个函数 f(x) 满足以下性质:
- 输出范围:f(x) 的值限定在区间 (0, 1),便于解释为概率。
- 平滑性:函数连续且可导,以便使用梯度下降进行优化。
- 单调性:函数值随着输入 x 的增大而增大。
- 对称性:以 x = 0 为对称中心,输入为 0 时,输出为 0.5,表示不偏不倚的概率。
2-2. 构造 Sigmoid 函数
为了满足这些性质,可以使用指数函数 的形式,因为指数函数本身是平滑的、单调递增的。
构造输出范围
首先,为了限制输出范围在 (0, 1),我们构造如下函数:
其中 g(x) > 0 保证分母大于 1,因此 f(x) 始终在 (0, 1)。
选择 ,得到:
性质验证
-
输出范围: