【漫话机器学习系列】038.KNN算法(Does K-NN Learn)

KNN算法:K-近邻算法(K-Nearest Neighbors Algorithm)

KNN(K-Nearest Neighbors)是一种简单且广泛使用的监督学习算法,常用于分类和回归问题。它基于“相似样本具有相似输出”的思想,通过计算样本点之间的距离来进行预测。


算法的基本思想

KNN算法的核心是:

  1. 定义距离:计算待预测样本与训练样本之间的距离。
  2. 选择邻居:选择距离最近的 K 个样本。
  3. 输出结果
    • 分类问题:选择 K 个邻居中出现次数最多的类别作为预测结果。
    • 回归问题:返回 K 个邻居的平均值或加权平均值作为预测结果。

KNN算法的步骤

  1. 数据准备
    • 收集并整理训练数据集。
  2. 距离计算
    • 对于待预测样本,计算其与训练集中每个样本的距离。
    • 常见距离公式:
      • 欧几里得距离: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值