【深度学习】常见模型-循环神经网络(Recurrent Neural Network, RNN)

循环神经网络(RNN)

概念简介

循环神经网络(Recurrent Neural Network, RNN)是一种用于处理序列数据(如时间序列、文本序列等)的神经网络模型。与传统神经网络不同,RNN 的结构具有记忆能力,可以通过隐状态(hidden state)对输入序列的上下文信息进行建模。它在自然语言处理(NLP)、语音识别、时间序列预测等领域中应用广泛。


核心特性

  1. 序列建模能力:能够捕捉输入数据的时间依赖性,适合处理具有时间或顺序关系的数据。
  2. 参数共享:在序列的每个时间步(time step)上,RNN 使用相同的权重矩阵进行计算。
  3. 循环结构:通过隐状态将过去的信息传递到当前时间步。

RNN 的基本计算过程为:

h_t = f(W_x x_t + W_h h_{t-1} + b)

其中:

  • h_t:当前时间步的隐状态。
  • x_t:当前时间步的输入。
  • W_x, W_h, b:权重矩阵和偏置。
  • f:激活函数(常用 tanh 或 ReLU)。

RNN 的局限性

  1. 梯度消失和梯度爆炸:在处理长序列时,误差梯度可能在反向传播过程中消失或爆炸,导致模型难以训练。
  2. 长时依赖问题:RNN 难以捕捉序列中相隔较远的依赖信息。

为解决这些问题,改进模型如 LSTM(长短期记忆网络)和 GRU(门控循环单元)被提出。


关键变体

  1. LSTM(Long Short-Term Memory)
    • 引入
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值