第三章: 神经网络原理详解与Pytorch入门
第一部分:神经网络算法理论详解与实践
第一节:神经网络预备知识
内容:线性代数、微积分、概率等相关数学基础
神经网络作为一种复杂的机器学习模型,其背后依赖于大量数学知识。本节介绍神经网络所需的三类核心数学基础:线性代数、微积分、概率统计。
一、线性代数基础
【机器学习】机器学习中用到的高等数学知识-1.线性代数 (Linear Algebra)_机器学习的数学-CSDN博客
神经网络中几乎所有计算都基于向量与矩阵运算,理解这些是掌握神经网络的前提。
1. 向量与矩阵运算
概念 | 表达 | 示例 |
---|---|---|
向量加法 | [1,2] + [3,4] = [4,6] | |
数乘 | 2⋅[1,3] = [2,6] | |
矩阵乘法 | A⋅B |
神经元的前向传播过程本质上就是矩阵-向量乘法 + 偏置项 + 激活函数。
2. 常用矩阵操作
-
转置:
-
点积(内积):衡量两个向量方向相似性
-
范数:
,表示向量长度
二、微积分基础
【机器学习】机器学习中用到的高等数学知识-3.微积分 (Calculus)_机器学习里的梯度是曲面积分吗-CSDN博客
神经网络的学习过程本质是一个最优化问题,需要使用微积分来求导和更新参数。
1. 导数的含义
-
表示函数变化率(斜率)
-
神经网络中用于计算损失函数对权重的梯度
2. 常用函数导数
函数 | 表达式 | 导数 |
---|---|---|
Sigmoid | ||
ReLU | max(0, x) | 0(x<0), 1(x>0) |
tanh | tanh(x) |
3. 链式法则(Chain Rule)
多层神经网络需要链式求导:
这就是反向传播(Backpropagation)的数学基础。
三、概率与统计基础
神经网络中使用概率建模不确定性,尤其在分类任务中表现显著。
1. 概率分布
类型 | 分布函数 | 典型用途 |
---|---|---|
伯努利分布 | 0/1 分类 | 二分类输出概率 |
高斯分布 | 权重初始化、损失建模 | |
多项式分布 | 多分类问题 | Softmax 输出 |
2. 条件概率与贝叶斯
-
条件概率:
-
贝叶斯定理:常用于更新信念,是生成模型、变分推断的基础。
3. 期望与方差
名称 | 定义公式 | 说明 |
---|---|---|
数学期望 | 平均值 | |
方差 | 分布广度 |
四、数学与神经网络结构的关系总结
数学基础 | 在神经网络中的应用 |
---|---|
线性代数 | 神经元运算、权重矩阵更新、卷积运算 |
微积分 | 反向传播、梯度下降、激活函数优化 |
概率统计 | 分类输出建模、损失函数设计、贝叶斯深度学习 |
小结
-
神经网络学习依赖:线性变换 + 非线性激活 + 损失优化 + 梯度更新
-
掌握这些数学概念,有助于理解神经网络训练过程中的每一步。