【有源码】基于大数据的皮肤癌数据可视化分析系统-基于spark+python的皮肤疾病因素分析与预测系统毕设项目

『AI先锋杯·14天征文挑战第5期』 10w+人浏览 780人参与

注意:该项目只展示部分功能,如需了解,文末咨询即可。

1 开发环境

发语言:python
采用技术:Spark、Hadoop、Django、Vue、Echarts等技术框架
数据库:MySQL
开发环境:PyCharm

2 系统设计

随着环境污染、生活方式变化以及紫外线暴露的增加,皮肤癌已成为全球范围内发病率逐年上升的重要公共健康问题。传统的皮肤癌研究与诊断主要依赖于医院临床数据和医生经验,存在数据量有限、分析维度单一、可视化不足等问题。随着大数据与人工智能技术的发展,医疗健康领域对多维度、海量数据的需求日益增长,借助大数据平台实现对皮肤癌病例的深度挖掘和可视化展示,不仅可以帮助科研人员发现潜在的发病规律,也能为临床医生提供辅助决策依据。因此,构建一个基于大数据的皮肤癌数据可视化分析系统,具有现实紧迫性和学术研究价值。

本系统的研究内容围绕大数据背景下皮肤癌的多维度可视化分析展开,利用Hadoop与Spark对大规模皮肤癌病例数据进行清洗、处理与计算,确保数据的准确性与可扩展性;通过Python和Echarts实现分析结果的可视化展示,使复杂的医学数据以图表形式呈现,直观易懂。系统整体研究目标是从患者个体特征、临床表现、环境与遗传因素以及诊疗行为等多个维度,全面描绘皮肤癌的发生规律,辅助科研人员与医生进行更精准的诊断与预防研究。通过模块化的设计,系统不仅能满足临床应用需求,也能为相关学术研究提供数据支撑,推动皮肤癌研究的智能化与信息化发展。

患者性别分布分析:统计不同皮肤癌诊断类型的男女比例,发现性别差异。

年龄结构分析:揭示各类皮肤癌的高发年龄段,为重点人群预防提供参考。

吸烟与饮酒习惯分析:探索生活方式与皮肤癌发病的潜在关系。

农药接触史分析:验证环境暴露是否增加特定皮肤癌风险。

病变尺寸分析:量化不同诊断类型病变的平均直径,辅助临床判断。

高发部位统计:分析皮肤癌最常见的发生部位,提示防护重点。

症状频率分析:识别典型症状与病种的关联,提高早期警惕性。

家族史与风险分析:评估遗传背景对皮肤癌易感性的影响。

菲氏分型与发病分析:揭示不同肤色群体的皮肤癌易感性。

人种背景分析:比较不同人种的皮肤癌诊断分布差异。

症状组合关联规则挖掘:利用Apriori算法发现高危症状组合。

活检行为分析:评估临床诊断与病理验证之间的关系。

部位风险分析:计算高发部位的恶性与良性病变比例,评估部位风险。

3 系统展示

3.1 功能展示视频

基于spark大数据+python的皮肤癌数据可视化分析系统 !!!请点击这里查看功能演示!!!

3.2 大屏页面

在这里插入图片描述
在这里插入图片描述

3.3 分析页面

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.4 数据管理页面

在这里插入图片描述

4 更多推荐

计算机专业毕业设计新风向,2026年大数据 + AI前沿60个毕设选题全解析,涵盖Hadoop、Spark、机器学习、AI等类型
计算机专业毕业设计选题深度剖析,掌握这些技巧,让你的选题轻松通过,文章附35个优质选题助你顺利通过开题!
【避坑必看】26届计算机毕业设计选题雷区大全,这些毕设题目千万别选!选题雷区深度解析
【有源码】基于spark+hadoop大数据的眼疾数据分析与可视化系统的设计与实现
基于Spark的大规模气象地质灾害数据可视化分析平台-基于大数据的气象地质灾害智能预警与可视化系统

5 部分功能代码

# 功能:使用Spark对皮肤癌患者的年龄数据进行分段统计,并计算各类皮肤癌的高发年龄段
# 初始化Spark
spark = SparkSession.builder.appName("SkinCancerAgeAnalysis").getOrCreate()
# 读取患者数据 (示例数据表:patients)
df = spark.read.format("jdbc").options(
    url="jdbc:mysql://localhost:3306/skincancer",
    driver="com.mysql.jdbc.Driver",
    dbtable="patients",
    user="root",
    password="123456"
).load()
# 定义年龄分段:青年(0-35)、中年(36-55)、老年(56+)
df_age = df.withColumn("age_group", when(col("age") <= 35, "青年")
                       .when((col("age") > 35) & (col("age") <= 55), "中年")
                       .otherwise("老年"))
# 按诊断类型与年龄段统计人数
age_result = df_age.groupBy("diagnostic", "age_group").agg(count("*").alias("count"))
# 保存结果到MySQL供可视化使用
age_result.write.format("jdbc").options(
    url="jdbc:mysql://localhost:3306/skincancer",
    driver="com.mysql.jdbc.Driver",
    dbtable="age_analysis",
    user="root",
    password="123456"
).mode("overwrite").save()

源码项目、定制开发、文档报告、PPT、代码答疑

希望和大家多多交流 ↓↓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值