注意:该项目只展示部分功能,如需了解,文末咨询即可。
1 开发环境
发语言:python
采用技术:Spark、Hadoop、Django、Vue、Echarts等技术框架
数据库:MySQL
开发环境:PyCharm
2 系统设计
随着短视频平台的普及,快手作为国内领先的短视频社交平台,吸引了大量大学生用户。为深入了解快手在大学生群体中的活跃情况,开发了基于大数据技术的快手平台用户活跃度分析系统。本系统通过对大学生用户的活跃数据进行全面分析,利用Hadoop和Spark等大数据框架进行数据处理,并结合Vue与Echarts进行可视化展示,旨在为平台运营者提供精准的活跃度分析、用户行为洞察及个性化营销策略支持。
本系统的研究内容主要分为四个维度,分别从整体活跃状况、用户属性、地理与学校分布、用户行为模式等方面进行深入分析。首先,整体用户活跃状况分析为我们提供了全平台的健康度与活跃度基准,包括用户活跃等级、日均活跃用户数(DAU)等重要指标。用户画像维度分析则通过性别、设备类型、异地与本地用户等因素,揭示了不同群体在活跃度上的表现差异,帮助平台针对不同用户群体进行运营优化。接下来,地理与学校维度分析从地域和教育层次的角度,细化了用户活跃度在不同省份、城市和学校中的分布,为精准市场定位提供了依据。最后,用户行为模式深度挖掘通过聚类分析等方法,深入挖掘用户行为模式,发现高活跃用户群体与低活跃用户群体的共性特征,进一步支持平台的精准营销和个性化推荐。功能模块简介:
整体用户活跃状况分析:该模块提供平台的整体用户活跃度评估,涵盖活跃度等级分布、日均活跃用户数、活跃天数统计等核心指标,帮助平台运营者把握平台整体健康度与活跃水平。
用户画像维度分析:通过性别、操作系统、地域等维度,分析不同用户群体在活跃度上的差异,为个性化运营与精准营销提供支持。
地理与学校维度分析:该模块聚焦用户的地理分布与学校层次,深入分析不同地区、学校类型用户的活跃情况,为市场推广和区域运营提供数据依据。
用户行为模式深度挖掘:结合K-Means聚类分析等方法,挖掘用户行为模式,识别高活跃用户与低活跃用户的差异,提供个性化推荐和精准的运营策略。
3 系统展示
4 更多推荐
计算机专业毕业设计新风向,2026年大数据 + AI前沿60个毕设选题全解析,涵盖Hadoop、Spark、机器学习、AI等类型
计算机专业毕业设计选题深度剖析,掌握这些技巧,让你的选题轻松通过,文章附35个优质选题助你顺利通过开题!
【避坑必看】26届计算机毕业设计选题雷区大全,这些毕设题目千万别选!选题雷区深度解析
【有源码】基于大数据的皮肤癌数据可视化分析系统-基于spark+python的皮肤疾病因素分析与预测系统毕设项目
【有源码】基于spark+hadoop大数据的眼疾数据分析与可视化系统的设计与实现
5 部分功能代码
# 基于总活跃天数来估算日均活跃用户数(DAU)
from pyspark.sql.functions import sum
# 计算总活跃天数(每个用户的活跃天数总和)
total_active_days = user_data.agg(sum("active_days")).collect()[0][0]
# 估算日均活跃用户数(总活跃天数 / 7)
dau_estimation = total_active_days / 7
# 输出结果
print(f"估算日均活跃用户数:{dau_estimation}")
# 基于总活跃天数来估算日均活跃用户数(DAU)
from pyspark.sql.functions import sum
# 计算总活跃天数(每个用户的活跃天数总和)
total_active_days = user_data.agg(sum("active_days")).collect()[0][0]
# 估算日均活跃用户数(总活跃天数 / 7)
dau_estimation = total_active_days / 7
# 输出结果
print(f"估算日均活跃用户数:{dau_estimation}")
源码项目、定制开发、文档报告、PPT、代码答疑
希望和大家多多交流 ↓↓↓↓↓