AI超算平台:开启智能高效新时代

前言

    在数字化浪潮汹涌澎湃的当下,科技发展日新月异,每一次技术的突破都可能重塑行业格局,引领时代变革。近年来,AI 技术的迅猛发展,无疑是这场科技变革中的最强音,其影响力辐射至全球各个角落,渗透进各行各业的血脉之中。从 chatppt 到 deepseek 等 AI 平台的相继问世,AI 能力已不再是高高在上、遥不可及的前沿概念,而是以一种前所未有的速度普及开来,变得触手可得,成为推动各行业创新发展的核心驱动力。

    这一创新性的 “超算算式 + AI + Agent + 各平台” 组合模式,犹如一把神奇的钥匙,开启了智能计算的全新大门,构建起了功能强大的 AI 超算平台。从本质上讲,AI 超算平台不仅仅是一个简单的计算工具,它更是一套智能的 AI 数据流执行系统,能够实现数据按照特定规则和流程进行高效变更与流转,为企业和组织提供更加智能、高效、灵活的计算服务,助力其在激烈的市场竞争中脱颖而出,引领行业发展新潮流。

2. 目标

2.1 取代定制化开发,降本增效新路径

2.1.1 现状

    当前,多数项目为满足多样化业务需求,存在大量定制化开发工作,这导致项目分支难以有效管控,同时造成了人力成本的浪费。例如,在工单处理场景中,一个简单的建单需求,如当工单进入时,自动将当前日期加上指定天数并填充到另一个工单字段,就不得不启动加急流程来完成开发。该需求若通过传统开发方式,需投入开发测试三人天,按 1500 元 / 人天的成本计算,成本较高;而使用超算平台,仅需 1 分钟即可完成配置,效率提升显著。相关数据来源于,通过分析非标准产品需求占比以及需求加急次数等关键指标,可以清晰地认识到超算平台在解决此类问题方面的巨大潜力。

    在引入超算自定义类后,将定制化业务进行分类,制定了四大类型函数,并通过配置公式实现流程自动化与字段联动,在一定程度上大幅减少了定制化开发需求。然而,这也引发了新的问题。由于超算公式需具备强大功能以支持复杂业务场景,其配置参数和公式数量较多,这对配置人员而言,存在一定的学习成本和使用成本。例如,一个简单的算式配置可能需要耗费 30 分钟时间。同时,大量人员针对公式配置问题进行咨询,进一步增加了人力成本投入。

2.1.2  未来

阶段一:基于 deep seek 技术,实现通过自然语言生成算式,并由用户手动进行算式配置。此阶段旨在初步降低配置人员对复杂超算公式的直接操作难度,利用自然语言交互方式简化算式生成流程。

阶段二:基于 agent 技术,打通工单平台,实现自动生成算式并完成自动配置。通过自动化流程,进一步提升工作效率,减少人工干预,降低操作成本与出错概率。

2.2 对话式协作提单,便携体验新升级

2.2.1 现状

    目前,各公司所采用的工单平台各不相同,如 OA、北森、飞书等。在引入 ITSM 系统后,需要对多个系统进行对接整合,这不仅耗费大量人力,而且在实际使用过程中,用户需要频繁在各个平台之间来回切换,操作繁琐,使用体验不佳。

2.2.2 未来

在超算平台上,用户只需通过聊天方式输入提单需求,如 “要提什么工单给谁”,deep seek 将对自然语言进行解析,输出工单业务数据,并通过 agent 将数据传递至各个工单系统进行执行。用户能够在单一平台上实现业务流转,实现无感提单,极大提升用户操作的便捷性与体验感,增强客户对平台的依赖度。

3. 实现

3.1 系统概述

    ZCalculate 作为一个智能公式计算引擎,集成了自然语言处理(NLP)和大语言模型(LLM)能力。该引擎能够将用户输入的自然语言需求转换为标准化的计算公式,并配备了丰富的内置函数库,为复杂业务场景下的公式计算提供支持。

3.2 主要模块

1.公式服务层 (Formula Service)

FormulaServiceImpl:负责管理所有内置公式定义。

支持四大类函数

日期函数(如:DAYTSP, DATEFORMAT):用于处理与日期相关的计算需求,如日期转换、日期差值计算等。

逻辑函数(如:AND, OR):实现逻辑判断与运算功能,支持复杂业务逻辑中的条件判断组合。

文本函数(如:INDEX, CONCAT):针对文本数据进行操作,包括文本索引查找、文本拼接等功能。

数字函数(如:SUM, POW):提供常见的数字运算功能,如求和、幂运算等。

2.NLP 服务层

LocalNLPService:提供本地 NLP 处理服务,用于对输入文本进行预处理、分析等操作。

HanLPTokenizerService:作为中文分词服务,利用 HanLP 工具实现对中文文本的准确分词,为后续文本分析提供基础。该服务支持模型训练和持久化,可根据业务需求不断优化分词效果。

3.LLM 集成层

DeepSeekService:实现与大模型的集成服务,负责调用 deep seek 模型进行自然语言处理相关任务,如文本生成、语义理解等。

DeepSeekPromptBuilder:用于构建向大模型发送的提示词,通过精心设计提示词,引导模型生成符合业务需求的高质量结果。

4.缓存层

问题相似度缓存:缓存已处理问题及其相似度计算结果,当遇到相似问题时,可快速从缓存中获取结果,提高处理效率。

公式结果缓存:对已计算生成的公式结果进行缓存,避免重复计算,提升系统响应速度。

4.4 技术特性

1.可扩展性设计

函数库扩展:通过 addFormulaDefinition 方法,可便捷地添加新函数至函数库。同时,支持自定义函数分类以及参数定义,以满足不断变化的业务需求,灵活扩展系统功能。

模型训练扩展:支持增量训练模式,可在已有模型基础上,根据新数据不断优化模型性能。并且允许自定义训练数据源,用户能够根据自身业务数据特点,选择合适的数据进行模型训练,提升模型对特定业务场景的适应性。

2.性能优化

缓存策略:采用 @Cacheable 注解,以需求文本作为缓存键值(key = "#requirementText"),并设置条件(unless = "#result == null"),确保在结果不为空时从缓存中获取公式响应,避免重复计算,有效提升系统性能。

并发处理:使用 ConcurrentHashMap 存储缓存数据,保证在多线程环境下缓存操作的线程安全性。同时,实现线程安全的服务,确保系统在高并发场景下稳定运行,提高系统整体的响应速度与吞吐量。

更多请查看视屏:

一款依托于LLM和NPL的数据流计算和执行系统,只干两件事:取代定制化开发和对话式办公 更多详情可关注“风云无极科技工作室”公众号

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值