【论文学习笔记-5】立体匹配之MC-CNN

本文深入探讨了MC-CNN在立体匹配中的SGM(Stereo Matching Cost Aggregation)过程,包括十字架聚合法、惩罚值调整策略以及左右一致性检验。此外,还介绍了亚像素增强技术和传统滤波器在提升视差图质量中的应用,最终通过5x5中值滤波和双边滤波实现去噪和平滑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇博客主要关注MC-CNN的SGM及后处理部分。

Cross-based cost aggregation

在这里插入图片描述

如上图所示的十字架聚合法,对costvolume中每个像素进行上下左右四个方向的十字架延伸,各方向延伸长度由如下两个因素控制:
①当十字架中心像素和待延伸像素的pixel intensity的绝对值差小于阈值;
②当两像素点的空间距离小于阈值。
以上两点同时满足时进行延伸。在左右图中均进行如上操作,联合区域定义为:

在这里插入图片描述

聚合采用求取平均值,并进行迭代(希望迭代收敛?):

在这里插入图片描述

SGM过程

除了传统的p1,p2外,mc-cnn还加入了q1,q2进行惩罚值放缩,是否采用以及采用何种放缩手段由下列判断决定:
首先设置intensity阈值sgm_D,并设:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值