摘要:计算机视觉领域中,物体检测是一个重要而具有挑战性的任务。本文主要关注于目标检测算法中的一种经典模型YOLO(You Only Look Once),并通过改进YOLOv7的实验结果展示,引入了F1 Score指标,以便更全面地对比YOLOv5系列模型的精度表现。我们将详细介绍改进后的YOLOv7模型,并给出相应的源代码实现。
-
引言
目标检测在计算机视觉中扮演着重要的角色,它是许多应用如智能监控、自动驾驶等领域的基础。YOLOv7作为YOLO系列模型的最新版本,具有较好的检测速度和准确性。然而,为了更全面地评估其性能,我们将引入F1 Score作为评价指标,以获取更多的精度数据。 -
改进的YOLOv7模型
为了引入F1 Score,我们对YOLOv7进行改进。具体地,我们在模型训练的过程中添加了F1 Score的计算,并将其作为训练过程的一个指标。F1 Score综合考虑了准确率和召回率,能够更全面地评估模型的性能。以下是改进的YOLOv7模型的核心源代码:
# 计算F1 Score
def calculate_f1_score(true_positives, false_positives