影像标注工具 Labelme 试用情况

本文详述了试用开源图像标注工具Labelme的过程,包括硬件环境、安装步骤、功能操作以及常见问题。Labelme适用于物体检测、语义分割和图像分类,但存在加载慢和标注精度依赖用户的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、引言

2、试用过程及结果

2.1工具简介

2.2测试过程及结果

2.2.1硬件条件

2.2.2软件安装环境

2.2.3软件功能操作

2.2.4常见问题及快捷键等其他

3、总结

3.1Labelme 的优缺点

3.2 结语


1、引言

本报告旨在总结试用影像标注工具 LabelIme 过程中具体的安装环境、功能类型、标注数据导入/导出格式、规范和适用情况的评估和分析。通过对试用工具进行详细的观察和分析,从而对标注后影像的质量和适用性进行了全面的评估,并结合相关算法对目标要求进行评估。该目的主要是为了建立自己的数据集,便于进行更深度的学习训练。

2、试用过程及结果

2.1工具简介

LabelIme 是一款 麻省理工(MIT)的计算机科学和人工智能实验室(CSAIL)研发的图像标注工具,主要用于用于图像标注和分割的开源工具,广泛应用于计算机视觉和机器学习领域。它提供了一个直观且功能丰富的界面,使用户能够轻松地创建图像标注和分割数据集,以用于训练和评估模型。它是一个基于网页的工具,不需要下载或安装,为了保护数据的安全,目前也安装了本地的 LabelIme 软件。

2.2测试过程及结果

2.2.1硬件条件

2.2.2软件安装环境

(1)下载安装 anaconda,该测试环境版本为 conda 23.7.4,Python为 3.11.5。
(2)安 装 Labelme, 配 置 相 应 环境 , 打 开 Anaconda Prompt, 创 建Labelme 虚拟环境需要执行以下的命令行,依次为 conda create -n labelmepython=3.8、conda env list(检测下载信息)、conda activate labelme(激活 Labelme 虚拟环境),接下来依次执行 conda install pyqt、conda install pillow、pip install labelme(下载并安装 labelme 依赖的软件包)、conda list(查看软件是否安装成功

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值