目录
1、引言
本报告旨在总结试用影像标注工具 LabelIme 过程中具体的安装环境、功能类型、标注数据导入/导出格式、规范和适用情况的评估和分析。通过对试用工具进行详细的观察和分析,从而对标注后影像的质量和适用性进行了全面的评估,并结合相关算法对目标要求进行评估。该目的主要是为了建立自己的数据集,便于进行更深度的学习训练。
2、试用过程及结果
2.1工具简介
LabelIme 是一款 麻省理工(MIT)的计算机科学和人工智能实验室(CSAIL)研发的图像标注工具,主要用于用于图像标注和分割的开源工具,广泛应用于计算机视觉和机器学习领域。它提供了一个直观且功能丰富的界面,使用户能够轻松地创建图像标注和分割数据集,以用于训练和评估模型。它是一个基于网页的工具,不需要下载或安装,为了保护数据的安全,目前也安装了本地的 LabelIme 软件。
2.2测试过程及结果
2.2.1硬件条件
2.2.2软件安装环境
(1)下载安装 anaconda,该测试环境版本为 conda 23.7.4,Python为 3.11.5。
(2)安 装 Labelme, 配 置 相 应 环境 , 打 开 Anaconda Prompt, 创 建Labelme 虚拟环境需要执行以下的命令行,依次为 conda create -n labelmepython=3.8、conda env list(检测下载信息)、conda activate labelme(激活 Labelme 虚拟环境),接下来依次执行 conda install pyqt、conda install pillow、pip install labelme(下载并安装 labelme 依赖的软件包)、conda list(查看软件是否安装成功