机器学习流程示例(鸢尾花实例)

机器学习的基本步骤流程:
    1.数据获取
    2.数据基本处理
    3.特征工程
    4.模型训练
    5.模型评估
    


鸢尾花数据集的机器学习整体流程

1.用sklearn获取数据集(数据集获取)
    

1.获取数据集
        sklearn.datasets
        1.小数据集
            sklearn.datasets.load_*()
            从本地获取
        2.大数据集
            sklearn.datasets.fetch_*()
            从网上下载
            subset--表示获取的数据集类型(train/test/all)
            默认下载训练数据集(train)
    2.数据集返回值
        返回类型为bunch--字典类型
        返回值属性:
            data:特征数据数组
            target:目标数组
            feature_names: 特征名
            target_names: 目标名
            DESCR: 数据集介绍
    3.数据可视化
        import seaborn as sns
       &nb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不愧是我^_^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值