自注意力机制(Self-Attention Mechanism)

自注意力机制是一种用于处理序列数据的技术,广泛应用于自然语言处理(NLP)和计算机视觉等领域。它允许模型在处理一个元素时,考虑到整个序列中的其他元素,从而更好地捕捉长距离依赖关系。

例子:理解句子中的词语关系

假设我们有一个句子:“The cat sat on the mat.” 我们的目标是理解每个词在这个句子中的意义,并找出它们之间的关系。

通过这种方式,模型可以动态地关注句子中最重要的部分,例如“cat”与“sat”的关系比“the”更为重要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不愧是我^_^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值