Median of Two Sorted Arrays

本文介绍了一种在O(log(m+n))的时间复杂度内找到两个已排序数组中位数的方法。通过递归地查找第k个元素,文章提供了一个C++实现的解决方案,并详细解释了其背后的逻辑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).


思路:

本题如此讲解,设两个数组:a[0...i....m]  ,  b[0...j....n],两数组排列完毕。

如果a[i]<b[j] , 那么对a数组从i开始迭代寻找,前面那段没必要寻找。

循环递归结束的条件是k=1的时候,返回第一个数字。

代码:

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int len=nums1.size()+nums2.size();
        
        if(len%2)//奇数
            return  findKthElement( nums1 ,nums2 , (len+1)/2 ) ;
        else//偶数    
            return  (findKthElement(nums1,nums2,len/2)+findKthElement( nums1 , nums2 , len/2+1 ))*0.5 ;
    }
    
    double min(double x,double y){
        return x<y?x:y;
    }
    
    double findKthElement(vector<int>& nums1,vector<int>& nums2,int k){
        if(nums1.size()>nums2.size()){
            return findKthElement(nums2,nums1,k);
        }
        
        if(nums1.empty())   return nums2[k-1];
        if(nums2.empty())   return nums1[k-1];
        
        if(k==1)    return min(nums1[0],nums2[0]);
        
        int ia=min(k/2,nums1.size());
        int ib=k-ia;
        if(nums1[ia-1]<nums2[ib-1]){
            vector<int> new_nums1(nums1.begin()+ia,nums1.end());
            return findKthElement( new_nums1 , nums2 , k-ia ) ;
        }if(nums1[ia-1]>nums2[ib-1]){
            vector<int> new_nums2(nums2.begin()+ib,nums2.end());
            return findKthElement( nums1 , new_nums2 , k-ib ) ;
        }
        return nums1[ia-1];
    }
};


题目描述是关于寻找两个已排序数组 `nums1` 和 `nums2` 的合并后的中位数。这两个数组分别包含 `m` 和 `n` 个元素。要解决这个问题,首先我们需要合并这两个数组并保持有序,然后根据数组的总大小决定取中间值的方式。 1. 合并两个数组:由于数组是有序的,我们可以使用双指针法,一个指向 `nums1` 的起始位置,另一个指向 `nums2` 的起始位置。比较两个指针所指元素的大小,将较小的那个放入一个新的合并数组中,同时移动对应指针。直到其中一个数组遍历完毕,再将另一个数组剩余的部分直接复制到合并数组中。 2. 计算中位数:如果合并数组的长度为奇数,则中位数就是最中间的那个元素;如果长度为偶数,则中位数是中间两个元素的平均值。我们可以通过检查数组长度的奇偶性来确定这一点。 下面是Python的一个基本解决方案: ```python def findMedianSortedArrays(nums1, nums2): merged = [] i, j = 0, 0 # Merge both arrays while i < len(nums1) and j < len(nums2): if nums1[i] < nums2[j]: merged.append(nums1[i]) i += 1 else: merged.append(nums2[j]) j += 1 # Append remaining elements from longer array while i < len(nums1): merged.append(nums1[i]) i += 1 while j < len(nums2): merged.append(nums2[j]) j += 1 # Calculate median length = len(merged) mid = length // 2 if length % 2 == 0: # If even, return average of middle two elements return (merged[mid - 1] + merged[mid]) / 2.0 else: # If odd, return middle element return merged[mid] ``` 这个函数返回的是两个数组合并后的中位数。注意,这里假设数组 `nums1` 和 `nums2` 都是非空的,并且已经按照升序排列。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值