- 博客(18)
- 收藏
- 关注
原创 Leetcode-.283移动零
本题运用双指针来写:一个指针用来遍历数组,一个用来记录“有效位”索引,如果遍历的时候发现元素不是0,立马就可以跟有效位置索引的数组进行交换,
2025-07-19 03:24:41
96
原创 Datawhale夏令营-机器学习 : 0.63 -> 0.97
使用如果你在处理的是分类问题,并且正负样本比例不平衡(比如“新增用户”只占很少),那你用的就更进一步了,它在划分每一份的时候,还会确保正负样本的比例一致,这能避免某一折验证集全是负样本,导致模型评估不准。将用户的多次行为汇总成用户画像从事件级别提升到用户级别的特征为模型提供更丰富的用户行为信息没有聚合:只知道用户做了什么有了聚合:知道用户是什么样的人。
2025-07-18 22:29:18
1284
原创 机器学习-深入理解 ChatGPT
预训练,又被称为自监督学习(Self-supervised Learning)或构建基石模型(Foundation Model)。它在 ChatGPT 的命名中占据了“P”的位置,代表着“Pre-trained”。简单来说,ChatGPT 的核心功能是文本接龙。它是一个函数,能够根据输入生成连贯的文本。人类老师的教导:提供大量的输入-输出对,让模型学习正确的响应。网络上的海量数据:通过自监督学习从无标签数据中提取知识。
2025-07-17 14:00:26
476
原创 Leetcode-41.缺失的第一个正数
思路很简单:直接把数组排序后,丢到set里面,如果正数的i,不在set里面,说明就是缺少它。问题的本质是 “存在性查询”,而存在性查询的最优数据结构是哈希表。
2025-07-16 23:55:05
179
原创 Datawhale AI夏令营-机器学习
使用如果你在处理的是分类问题,并且正负样本比例不平衡(比如“新增用户”只占很少),那你用的就更进一步了,它在划分每一份的时候,还会确保正负样本的比例一致,这能避免某一折验证集全是负样本,导致模型评估不准。将用户的多次行为汇总成用户画像从事件级别提升到用户级别的特征为模型提供更丰富的用户行为信息没有聚合:只知道用户做了什么有了聚合:知道用户是什么样的人。
2025-07-15 18:58:38
1138
原创 Leetcode-238.除自身以为的数组相乘
注意:题目限制复杂度了,所以不能使用双循环,本题巧妙的地方在于,用了前缀积和后缀积储存该数组前后的乘积。注意上部分的循环和下部分循环有轻微不一样,就是下部分的循环直接乘answer即可保证了连贯。
2025-07-15 16:31:50
394
原创 Leetcode-56.合并区间
如果current[0]小于last[1],就说明可以合并,更新的时候只用把last[1]更新成max。如果current[0]大于last[1],直接append current即可。而排序的核心作用就是通过调整区间顺序,消除对。剩下的步骤只需要完成比较curret和last。(current[1],last[1])即可。的显式判断,使得我们只需关注。本题的核心是处理一个二维的数组。先将区间按左端点排序。
2025-07-13 16:28:49
386
原创 Leetcode-53.最大子数组
如果前面子数组之和是负数,那我不如拿max(这个数组,前面子数组之和)。如果前面子数组之和是正的,那我直接前面子数组加这个数组是最大的。第一种只拿当前这个数组,也就是从这个数组开始。第二种前面的子数组之和,加上当前这个数组。核心思路是一个局部数组,一个全局数组。然后全局数组负责记录最大的之和。
2025-07-13 02:32:13
465
原创 统计学复习
PX1pPX01−p其中0≤p≤1P(X = 1) = p, \quad P(X = 0) = 1 - p, \quad \text{其中 } 0 \le p \le 1,PX1pPX01−p其中0≤p≤1现在,我们选择一个ϵϵϵ,例如ϵ0.5ϵ=0.5ϵ0.5(任何小于1的正数都可以)。我们来计算概率P∣Xn−X∣0.5P∣Xn−X∣>0.5P∣Xn−X∣0.5P。
2025-07-12 02:11:03
473
原创 leetcode-3591.频数为质数
第二步用两个循环来遍历数组,一个负责记录当前记录的数组,另一个负责记录出现的频数。注意重复出现的数组就不要再统计了,用集合来记录已经出现过的元素,一旦遇到重复的就直接跳过循环,到下一个数组。主要考察数组中出现的次数是否为质数,质数返回true,否则返回false。
2025-07-12 02:09:28
301
原创 金融数学笔记
δtδ(t)δtLxL_xLxXtX_tXt: 时刻ttt的还款金额(Instalment)ftf_tft:时刻ttt偿还的本金部分(capital repaid)btb_tbt:时刻ttt偿还的利息部分(interest paid)利息是由loan计算出来的btLX−1∗itbtLX−1∗it每期固定还钱金额=还款本金+利息XtftbtXtftb。
2025-07-03 19:53:27
596
原创 量价趋势策略(VPT)
摘要: VPT(量价趋势)策略通过分析成交量与价格变动的协同关系判断市场趋势有效性,其核心原则是:真实趋势需成交量支撑。价格上涨/下跌伴随成交量放大表明趋势可靠;反之可能预示反转。策略基于VPT指标(累加成交量与价格变化百分比的乘积)及其移动平均线生成交易信号,并引入成交量放大倍数过滤无效信号。开仓需同时满足趋势确认(VPT与均线关系)、能量确认(成交量显著放大)和方向确认(价格变动方向)。平仓依据趋势反转信号。该策略融合动量效应和成交量确认理论,旨在捕捉真实资金流推动的主趋势。
2025-06-28 15:51:56
650
原创 计算机网络
本文解析了数据包在网络中的传输过程,分为主机、交换机和路由器三个视角。主机通过IP地址和子网掩码判断目标位置,使用ARP协议获取MAC地址,将数据发送至交换机。交换机基于MAC地址表转发数据帧,仅作中继。路由器则根据IP地址查询路由表,确定下一跳并转发数据。整个过程展示了从主机到目标设备的数据传输路径,揭示了网络设备间的协作机制。
2025-06-26 19:11:00
878
原创 机器学习——批次(Batch)与动量(Momentum)
基本定义回顾:大的batch有平行计算加持,其实并不比小batch慢算整个epoch的时候,其实小batch,不一定算快重点讲解:GPU并行计算带来的反直觉效率如果大批次更快,我们为什么不总是用它呢?下一部分给出了颠覆性的答案:训练效果。重点讲解(一):“带噪声的梯度”有助于优化重点讲解(二):小批次能找到“更好”的最小值,提升泛化能力核心问题:为什么小批次训练的模型在**测试集(Test Set)**上表现更好?这涉及到模型的泛化能力。“宽阔”与“狭窄”的最小值 (Wide vs. Sharp Minim
2025-06-23 21:22:10
1079
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人