基于贝叶斯网络的CNN-LSTM股票价格预测

727 篇文章 ¥39.90 ¥99.00

基于贝叶斯网络的CNN-LSTM股票价格预测

在金融领域,股票价格预测一直是一个备受关注并且具有挑战性的问题。传统的方法通常采用时间序列模型,然而这些模型往往不能考虑到相关因素之间的复杂关系。本文提出了一种基于贝叶斯网络、CNN和LSTM的混合模型,旨在更准确地预测股票价格。

贝叶斯网络的作用是可以捕获相关因素之间的依赖关系,而CNN则能够有效地提取时间序列数据中的特征信息。 LSTMs则适用于处理长期依赖和非线性关系。所以,整个模型将贝叶斯网络、CNN和LSTM三者有机地相结合。

下面是模型的主要步骤:

  1. 数据收集:从Yahoo Finance获取了苹果公司(AAPL)的历史数据,包括每日开盘、最高、最低、收盘和交易量等。

  2. 数据预处理:通过对数变换,归一化和差分处理,将原始数据转化为平稳的时间序列数据。

  3. 贝叶斯网络建模:使用Python的Bayesian Networks库,在已处理的时间序列数据上建立了一个贝叶斯网络模型。

  4. CNN-LSTM模型建立:将贝叶斯网络的结构和CNN-LSTM的框架组合在一起,输入为之前处理后的时间序列数据,输出为未来一天的股票价格。

  5. 训练和测试:使用最大似然估计方法来训练模型,并将测试集的结果与真实值进行比较。通过均方误差和平均绝对误差来评估模型的性能。

下面是完整的Python代码:

# 导入必要的库
<
### 使用贝叶斯网络优化CNN-LSTM模型进行股票价格预测 #### 贝叶斯优化简介 贝叶斯优化是一种用于寻找黑盒函数全局最优解的有效方法。该技术通过构建目标函数的概率代理模型来工作,通常采用高斯过程作为概率模型的基础[^1]。 #### CNN-LSTM模型概述 卷积神经网络(CNN)擅长捕捉局部依赖关系和空间层次特征;而长短期记忆网络(LSTM),作为一种特殊的循环神经网络(RNN),能够有效解决长期依赖问题。两者结合形成的CNN-LSTM架构可以充分利用各自优势,在处理具有时空特性的数据时表现出色[^2]。 #### 结合贝叶斯网络CNN- **数据预处理**:对原始金融时间序列执行标准化、缺失值填补等操作; - **特征工程**:应用滑动窗口机制创建训练样本,并考虑加入额外的技术指标作为辅助输入; - **模型搭建** - 利用CNN层自动抽取股价走势中的潜在模式; - 接着由LSTM单元负责编码这些抽象表示随时间变化的趋势信息; - **超参数调优**:借助贝叶斯优化算法动态调整关键配置项(如隐藏层数量、激活函数类型),从而找到最适合当前任务设置的一组参数组合[^3]。 ```matlab % MATLAB伪代码示例 function model = build_bayesian_cnn_lstm() % 定义CNN部分 inputLayer = imageInputLayer([height width channels]); convLayers = [ convolution2dLayer(filterSize,numFilters,'Padding','same') batchNormalizationLayer reluLayer]; % 连接至LSTM lstmLayer = lstmLayer(hiddenUnits); outputLayer = fullyConnectedLayer(outputSize); layers = [inputLayer;convLayers;lstmLayer;outputLayer]; % 创建网络对象 net = layerGraph(layers); % 设置损失函数与求解器选项 options = trainingOptions('adam',... 'MaxEpochs',maxEpoch,... 'MiniBatchSize',miniBatch,... % 应用贝叶斯优化策略选取最佳超参 bayesopt(@objectiveFunction,params,options) end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值