ClickHouse和Doris虽然都是高性能的列式OLAP数据库,但它们的设计定位和适用场景存在显著差异。
🔧 一、并行使用的可行性及典型场景
-
场景互补性驱动并行存储
- ClickHouse优势场景:单表海量数据聚合(如日志分析、用户行为轨迹),适合高吞吐、低延迟的简单聚合查询。其向量化引擎和稀疏索引在扫描亿级数据时性能卓越。
- Doris优势场景:复杂多表关联(如BI报表、Ad-Hoc查询),强在事务性导入、动态分区管理和高并发查询优化。
典型组合案例:- 用户行为日志存入ClickHouse做实时聚合;
- 交易数据与用户画像关联分析用Doris支撑报表。
-
数据冗余与灾备需求
在金融、电商等对数据可靠性要求极高的场景中,可通过双写实现异构建模:- 原始日志同时写入ClickHouse(原始存储)和Doris(聚合宽表);
- 一方故障时另一方可快速接管查询。
⚠️ 二、并行架构的挑战与成本
-
数据一致性维护复杂
- 双写需解决跨系统事务问题(如Flink实现Exactly-Once写入);
- 异步复制可能因网络抖动导致数据延迟或丢失。
-
资源与运维成本翻倍
- 存储成本增加(相同数据存两份);
- 需独立维护两套集群的监控、备份、扩缩容策略。
-
查询路由逻辑复杂化
- 业务层需判断查询类型并路由到对应数据库(如简单聚合走ClickHouse,多表Join走Doris);
- 跨库联合查询需依赖Trino等联邦查询引擎,增加延迟。
🛠️ 三、替代方案:单一系统扩展能力
若业务场景可被单一系统覆盖,优先优化现有架构更经济:
- Doris替代ClickHouse:若需强事务、高并发关联查询,可通过Rollup预聚合提升单表性能;
- ClickHouse替代Doris:若仅需高速单表扫描,通过物化视图预计算关联结果。
💎 四、决策建议:何时需要并行存储?
场景 | 推荐方案 | 说明 |
---|---|---|
实时日志分析+复杂报表 | ✅ 并行存储 | ClickHouse处理原始日志实时聚合,Doris承载关联查询与BI分析 |
数据可靠性要求极高 | ✅ 双写灾备 | 互为备份,但需容忍分钟级数据延迟 |
90%查询为单表聚合 | ⚠️ 仅用ClickHouse | 通过物化视图优化少数关联查询需求 |
复杂ETL与频繁数据更新 | ⚠️ 仅用Doris | 利用其事务性和动态分区管理能力 |
📊 五、若需并行存储的架构设计
graph LR
A[数据源 Kafka] --> B(Flink流处理)
B --> C[写入ClickHouse 日志明细]
B --> D[关联维度表生成宽表]
D --> E[写入Doris 聚合结果]
C --> F[BI工具:Grafana]
E --> F
F --> G{查询路由}
G -->|简单聚合| C
G -->|复杂关联| E
关键配置:
- Flink双写Sink:启用Checkpoint保证两端Exactly-Once;
- 查询路由层:基于SQL解析器自动路由(如将
COUNT(*)
定向至ClickHouse,JOIN
定向至Doris); - 数据生命周期:
- ClickHouse保留短期热数据(7天),Doris存储长期历史+聚合结果。
💎 总结
并行存储适合业务场景分化明显且资源充裕的团队,例如既要实时扫描TB级日志又要做多维度关联分析。但对多数场景,先用好单一系统并针对性优化更实际:
- 若强事务与复杂查询为主 → 选Doris,通过Rollup预计算提速;
- 若单表聚合为主 → 选ClickHouse,用物化视图解决关联需求。
并行方案需重点评估数据一致性成本与运维复杂度,避免陷入“为架构而架构”的陷阱。