ClickHouse和Doris的适用场景

ClickHouse和Doris虽然都是高性能的列式OLAP数据库,但它们的设计定位和适用场景存在显著差异。

在这里插入图片描述


🔧 一、并行使用的可行性及典型场景

  1. 场景互补性驱动并行存储

    • ClickHouse优势场景:单表海量数据聚合(如日志分析、用户行为轨迹),适合高吞吐、低延迟的简单聚合查询。其向量化引擎和稀疏索引在扫描亿级数据时性能卓越。
    • Doris优势场景:复杂多表关联(如BI报表、Ad-Hoc查询),强在事务性导入、动态分区管理和高并发查询优化
      典型组合案例
      • 用户行为日志存入ClickHouse做实时聚合;
      • 交易数据与用户画像关联分析用Doris支撑报表。
  2. 数据冗余与灾备需求
    在金融、电商等对数据可靠性要求极高的场景中,可通过双写实现异构建模

    • 原始日志同时写入ClickHouse(原始存储)和Doris(聚合宽表);
    • 一方故障时另一方可快速接管查询。

⚠️ 二、并行架构的挑战与成本

  1. 数据一致性维护复杂

    • 双写需解决跨系统事务问题(如Flink实现Exactly-Once写入);
    • 异步复制可能因网络抖动导致数据延迟或丢失。
  2. 资源与运维成本翻倍

    • 存储成本增加(相同数据存两份);
    • 需独立维护两套集群的监控、备份、扩缩容策略。
  3. 查询路由逻辑复杂化

    • 业务层需判断查询类型并路由到对应数据库(如简单聚合走ClickHouse,多表Join走Doris);
    • 跨库联合查询需依赖Trino等联邦查询引擎,增加延迟。

🛠️ 三、替代方案:单一系统扩展能力

若业务场景可被单一系统覆盖,优先优化现有架构更经济:

  • Doris替代ClickHouse:若需强事务、高并发关联查询,可通过Rollup预聚合提升单表性能;
  • ClickHouse替代Doris:若仅需高速单表扫描,通过物化视图预计算关联结果。

💎 四、决策建议:何时需要并行存储?

场景推荐方案说明
实时日志分析+复杂报表✅ 并行存储ClickHouse处理原始日志实时聚合,Doris承载关联查询与BI分析
数据可靠性要求极高✅ 双写灾备互为备份,但需容忍分钟级数据延迟
90%查询为单表聚合⚠️ 仅用ClickHouse通过物化视图优化少数关联查询需求
复杂ETL与频繁数据更新⚠️ 仅用Doris利用其事务性和动态分区管理能力

📊 五、若需并行存储的架构设计

graph LR
    A[数据源 Kafka] --> B(Flink流处理)
    B --> C[写入ClickHouse 日志明细]
    B --> D[关联维度表生成宽表]
    D --> E[写入Doris 聚合结果]
    C --> F[BI工具:Grafana]
    E --> F
    F --> G{查询路由}
    G -->|简单聚合| C
    G -->|复杂关联| E

关键配置

  1. Flink双写Sink:启用Checkpoint保证两端Exactly-Once;
  2. 查询路由层:基于SQL解析器自动路由(如将COUNT(*)定向至ClickHouse,JOIN定向至Doris);
  3. 数据生命周期
    • ClickHouse保留短期热数据(7天),Doris存储长期历史+聚合结果。

💎 总结

并行存储适合业务场景分化明显且资源充裕的团队,例如既要实时扫描TB级日志又要做多维度关联分析。但对多数场景,先用好单一系统并针对性优化更实际:

  • 若强事务与复杂查询为主 → 选Doris,通过Rollup预计算提速;
  • 若单表聚合为主 → 选ClickHouse,用物化视图解决关联需求。
    并行方案需重点评估数据一致性成本运维复杂度,避免陷入“为架构而架构”的陷阱。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值