123. 买卖股票的最佳时机 III

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
     随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。   
     注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。   
     因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:

输入:prices = [7,6,4,3,1] 
输出:0 
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。

示例 4:

输入:prices = [1]
输出:0

思路: 买卖股票的第二个变种,上一题是允许可以多次买卖股票,那我们无需考虑太多,有得赚就卖,这道题限制了最多买卖两次股票,当然可以不买,也可以只买一次。

虽然有变化,但核心思路是不变的,因为可以买卖两次,那我们就得记录两次的买卖情况,因此我们设立dp[i][0]~dp[i][3],其中dp[i][0]表示第一次持有股票,dp[i][1]表示第一次不持有股票,dp[i][2]表示第二次持有股票,dp[i][3]表示第二次不持有股票。有些人可能头大了,状态这么多,还要进行递推,实际上都是一个道理,慢慢理清。

dp[i][0]表示第一次持有股票,那有两种情况,i-1天已经持有股票,那dp[i][0] = dp[i-1][0];另一种情况,i-1天没持有股票,第i天第一次持有,那dp[i][0] = -prices[i],因为是第一次持有股票,因此在此之前还没有获得任何金钱,持有的话就是0减去股票价格,然后两者之间取更大的值,综上:dp[i][0] = max(dp[i-1][0],-prices[i])。

dp[i][1]表示第一次不持有股票,那有两种情况,i-1天已经不持有股票,那dp[i][1] = dp[i-1][1];另一种情况,i-1天持有股票,第i天第一次不持有,也就是卖出股票,那dp[i][1] = dp[i-1][0] +  prices[i],综上:dp[i][1] = max(dp[i-1][1],dp[i-1][0] +  prices[i])。这两个和上一题没有任何区别,又再理了一遍。

接下去新的是dp[i][2]表示第二次持有股票,t同样的也应该有两种情况。i-1天已经第二次持有股票,那dp[i][2] = dp[i-1][2];另一种情况,i-1天没有第二次持有股票,第i天第二次持有了股票,那dp[i][2] = dp[i-1][1]-prices[i],因为在这天第二次持有股票前,已经买卖了一次股票,已经得到了利润了,所以用那个利润钱减去买股票的钱。综上:dp[i][2] = max(dp[i-1][2],dp[i-1][1] -  prices[i])。

dp[i][3]表示第二次没有持有股票,同样的也有两种情况。i-1天已经第二次不持有股票,那dp[i][3] = dp[i-1][3];另一种情况,i-1天第二次持有股票,第i天第二次不持有了股票,也就是第二次卖出了股票,那dp[i][3] = dp[i-1][2]+prices[i].综上:dp[i][3] = max(dp[i-1][3],dp[i-1][2] +  prices[i])。

代码(Python): 

class Solution(object):
    def maxProfit(self, prices):
        if len(prices) == 0:
            return 0
        dp = [[0]*4 for _ in range(len(prices))]
        dp[0][0] = -prices[0]
        dp[0][1] = 0
        dp[0][2] = -prices[0]
        dp[0][3] = 0
        for i in range(1,len(prices)):
            dp[i][0] = max(dp[i-1][0],-prices[i])
            dp[i][1] = max(dp[i-1][1],dp[i-1][0]+prices[i])
            dp[i][2] = max(dp[i-1][2],dp[i-1][1]-prices[i])
            dp[i][3] = max(dp[i-1][3],dp[i-1][2]+prices[i])
        return dp[len(prices)-1][3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值