数学建模笔记(四):熵权

背景&基本思想介绍

        在实际的评价类问题中,在前面所说的层次分析法以及Topsis法中,指标权重的确定往往是通过主观的评价得来的,如果在没有专家的情况下,我们自己的权重分配往往可能带有一定的主观性,有没有一种可以客观确定指标的权重的方法呢?这就是本次要介绍的熵权法的由来。

        总的来说,从方法的名字来看我们可以知道,所谓熵,就是离散或者说混乱程度,熵权法的核心思想在于,我们可以通过一个指标在不同的评价对象上的离散程度来确定这个指标的重要性。这样讲可能有点抽象,下面我来举一个例子帮助大家理解。

       假如现在要对几个不同的城市的空气质量情况进行评估排名,每个城市在进行评价的时候有如下几个指标:第一个是PM2.5浓度,第二个是空气能见度,第三个是空气中含氮化合物的浓度,第四个是含硫化合物的浓度,在这几个城市中经过调查,发现他们的含氮化合物的浓度基本一致,那么大家想一想,当我们在进行评估的时候,极端情况下,假如我们只能拿出一个指标来评判,我们会拿含氮化合物浓度这个指标来进行评估吗?相信大家肯定都不会选择这个指标,理由很简单,因为这几个城市都是一样的,那怎么进行评价呢?

        所以相信大家能够从这个例子中大概了解到熵权法的一些思想,所谓离散程度,就是指这个指标在几个对象的身上的差异大不大,差异越大,离散程度越大,那么这个指标在评价的过程中,所能发挥的作用越大;反之,如果差异不大,离散程度越低,那么这个指标对评价的帮助就越小。我们肯定是要给帮助大的指标分配更多的权重,给帮助越小的分配更少的权重,这就是熵权法的基本思想。

方法具体实现

在所有的工作开始前,我么还要偶先对指标进行正向化处理,这一点