百度飞桨 PaddlePaddle 深度学习打卡7日营 -DAY2 玩转十二生肖分类(卷积神经网络)

本课程通过12生肖分类案例,深入浅出地介绍了卷积神经网络(CNN)的工作原理。从LeNet-5的基础结构开始,探讨了卷积层、池化层和全连接层,讲解了AlexNet、VGG、GoogleNet和ResNet等经典网络结构。课程还涵盖了数据准备、模型训练和图像分类的应用。学员将通过实际操作,掌握CNN在图像分类任务中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DAY2 玩转12生肖分类

课程链接:https://aistudio.baidu.com/aistudio/course/introduce/6771
2.4

#####################################################
班主任先讲:
QQ群的三个作用

  1. 官方班级群
  2. 课程答疑(每天晚上7-8点)
  3. 抽奖+一些其他周边的东西

平台的作用

  1. 课程回顾和复盘
  2. 领取课程证明

在github的paddle上可以用右上角star可以收藏paddlepaddle 代码

今晚内容:
1.12生肖分类
2.图像分类的脉络及整理
3.用 网络实现对于十二生肖的分类

鼓励学习的时候完成作业,第一个完成的和效果好的都有奖
鼓励发布学习笔记,标题、内容都有相关的要求,并且上传到讨论区中

#####################################################
正课部分:
玩转12生肖分类

大纲

1.了解十二生肖分类
2.图像分类原理
3.搭建ResNet50网络实现12生肖分类

任务本质:找到一个最优的算法,让机器讷讷够个分清每个属相动物的照片,是一个 图像分类 任务
即 输入为图片,输出为不同的生肖。
特征:
1.有明确的固定标签集合
2.通过数据对于模型的训练,找到一个最优(想对的概念)的算法。
3. 通过算法对于输入的十二生肖图像进行分类。

CV领域的常见任务: 图像分类、图像分割、物体检测 等

图像分类
本次属于图像分类(和昨天的手写数字识别是一个任务)
图像分类的较为经典案例:手写数字识别、Cifar10数据集(常见物体和动物)、垃圾分类
图像分类的主要任务类型:

  1. 二分类 1/2
  2. 多分类 1/2/3/4 …
  3. 多标签 一个图片中有多个待检测目标
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值