课程笔记-深度学习机器视觉01-新冠疫情可视化——From:百度AI Studio
写在前面:
开始第一课的学习 本次课以新冠疫情为背景介绍了图像识别与人工智能,并且有一个实践项目为案例。
总体来说是本次课程是五个深度学习实战案例
资料与资源
————————————————————————————————————————
正课部分:
课程总体安排
配套的有相关的作业,第五日还有一个人流密度检测的竞赛
图像识别和人工智能
大纲
图像识别定义和问题
传统图像识别方法
人工智能发展历程
图像识别的定义和问题
图像,对人类来说是信息传达,计算机看到的是数组
图像识别的目标:让计算机像人一样理解图像
图像识别的挑战:语义鸿沟
- 相同的视觉特性,不同的语义概念
人看到的是高层的语义概念,而计算机只能够从数字特征上去感知
- 不同的视觉特性,相同的语义概念
即使是同样的语义概念,图像也会遇到问题
图像识别的基本框架
测量空间==》特征空间==》类别空间
特征匹配 特征表示
图像识别发展历程
- 早期图像识别技术(1990-2003)
特征提取
主要为图像全局特征的提取 如颜色特征、形状特征、纹理特征等
索引技术
如:KD-tree 和LSH 技术等 通过先前的特征提取对图像进行聚类,方便索引和查找
相关反馈
通过分类对用户想要的类型图片进行筛选,并且通过索引进行呈现
重排序
通过人为的干预将更为相似的图片进行归类与重新排序
早期图像识别缺点: 由于是全局性特征提取,损失较大,且精度较低
- 中期图像识别技术
借鉴文本搜索的模型:倒排索引 有更多相同标签的图像被归为了一类
通过词将文章分类并且打上标签 搜索时搜索特定的词频就可以筛选出来特定的文章
因此中期图片技术希望把图像变为视觉词带
中期图像识别框架:
特征提取==》向量化==》索引技术==》后处理==》
进步1:特征提取由全局特征提取升级到了局部特征提取,更具有代表性
进步2:通过聚类分吸实现了局部化的特征提取
进步3:通过借鉴倒排索引实现了图片局部特征的标签化提取
人工智能图像识别发展历程
人工智能:使一部机器像人一样进行感知、认知、决策、执行的人工程序或系统
机器学习:通过对于经验(数据)的改进,提升机器处理能力和效率
实践项目
基于丁香园公开的统计数据,实现新冠疫情可视化,包括疫情地图、疫情增长趋势图、疫情分布图等
项目链接:https://aistudio.baidu.com/aistudio/projectdetail/1568661