Redis并发竞争key的解决方案详解

本文探讨了Redis在高并发环境下出现的并发竞争key问题,并提供了两种解决方案:使用分布式锁和借助消息队列。分布式锁通过确保互斥性和防止死锁来保证操作顺序;消息队列则通过串行化操作避免并发冲突。这两种方法在高并发场景中都有其适用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

file

Redis高并发的问题

Redis缓存的高性能有目共睹,应用的场景也是非常广泛,但是在高并发的场景下,也会出现问题:

今天要谈到的Redis并发竞争问题,这里的并发指的是多个redis的client同时set key引起的并发问题。

比如:多客户端同时并发写一个key,一个key的值是1,本来按顺序修改为2,3,4,最后是4,但是由于并发设置的原因,最后顺序变成了4,3,2,最后变成的key值成了2。

file

高并发架构系列:Redis并发竞争key的解决方案详解

如何解决Redis的并发竞争key问题

第一种方案:分布式锁
  • 1.整体技术方案 这种情况,主要是准备一个分布式锁,大家去抢锁,抢到锁就做set操作。
  • 2.为什么是分布式锁 因为传统的加锁的做法(如java的synchronized和Lock)这里没用,只适合单点。因为这是分布式环境,需要的是分布式锁。
  • 当然,分布式锁可以基于很多种方式实现,比如zookeeper、redis等,不管哪种方式实现,基本原理是不变的:用一个状态值表示锁,对锁的占用和释放通过状态值来标识。
  • 3.分布式锁的要求
  • 互斥性:在任意一个时刻,只有一个客户端持有锁。
  • 无死锁:即便持有锁的客户端崩溃或者其他意外事件,锁仍然可以被获取。
  • 容错:只要大部分Redis节点都活着,客户端就可以获取和释放锁
  • 4.分布式锁的实现方式
  • 数据库
  • Memcached(add命令)
  • Redis(setnx命令)
  • Zookeeper(临时节点)
    具体的分布式锁实现,请参考:阿里P8架构师谈:分布式锁的3种实现(数据库、缓存、Zookeeper)
第二种方案:利用消息队列

在并发量过大的情况下,可以通过消息中间件进行处理,把并行读写进行串行化。

把Redis.set操作放在队列中使其串行化,必须的一个一个执行。

这种方式在一些高并发的场景中算是一种通用的解决方案。

本文由博客一文多发平台 OpenWrite 发布!

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值