Sklearn 机器学习 数值指标 平均绝对误差MAE

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖

在这里插入图片描述

本博客的精华专栏:
【自动化测试】 【测试经验】 【人工智能】 【Python】


在这里插入图片描述

Sklearn 机器学习评估指标详解:平均绝对误差(MAE)

在机器学习中,尤其是在处理回归问题时,我们常使用各种评估指标来衡量模型性能。平均绝对误差(Mean Absolute Error,简称 MAE)是其中一种直观、稳健的回归评估方式。

本文将基于 scikit-learn,深入介绍 MAE 的定义、特点与实战应用,并使用加州房价数据集进行完整演示。


📘 一、什么是平均绝对误差(MAE)?

平均绝对误差(Mean Absolute Error)是用来衡量模型预测值与真实值之间差异的一种常见方法,计算的是预测误差的绝对值平均数,其公式如下:

M A E = 1 n ∑ i = 1 n ∣ y i − y ^ i ∣ MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| MAE=n1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas Kant

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值