💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖
本博客的精华专栏:
【自动化测试】 【测试经验】 【人工智能】 【Python】
Sklearn 机器学习评估指标详解:平均绝对误差(MAE)
在机器学习中,尤其是在处理回归问题时,我们常使用各种评估指标来衡量模型性能。平均绝对误差(Mean Absolute Error,简称 MAE)是其中一种直观、稳健的回归评估方式。
本文将基于 scikit-learn
,深入介绍 MAE 的定义、特点与实战应用,并使用加州房价数据集进行完整演示。
📘 一、什么是平均绝对误差(MAE)?
平均绝对误差(Mean Absolute Error)是用来衡量模型预测值与真实值之间差异的一种常见方法,计算的是预测误差的绝对值平均数,其公式如下:
M A E = 1 n ∑ i = 1 n ∣ y i − y ^ i ∣ MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| MAE=n1