Stable Diffusion电商图片优化指南:从背景替换到场景合成(附商业案例库)

前言:

本教程旨在阐述如何运用Stablediffusion技术高效实现人物图像背景替换。通过专业指导,学习者在掌握关键步骤后,将能够精确执行背景编辑,提升图像处理技能。立即开始,探索高级背景合成技术。 给人物制定背景更换 ,Redux 模型可以实现。


这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

给人物制定背景更换
另外Redux 模型主要是可以生成图生图迁移,可以让一个人物,产生不同动作,不同表情,不同材质,不同风格的图像。

同一角色,生成 不同材质,不同风格

同一角色,生成动作和表情
在过去的不久的时间里,黑森林工作室推出了令人瞩目的 FLUX Tools,其中包含 4 款全新的控制模型,分别为 canny、depth、Fill 和 Redux,它们为图像生成领域带来了新的活力与可能性。
1.模型介绍

在传统的 SD(Stable Diffusion)中,ControlNet 里有 canny (线稿)和 Depth (深度)这两种控制方式,它们分别通过线稿深度来控制图像生成。然而,Flux Tools 中的 Canny 和 Depth 独具特色,它们以内嵌于大模型的控制模型形式存在,只需加载 Lora 就能轻松实现图像生成控制,完全避免了在 SD 中调用 Controlnet 时的繁琐操作。

Fill 模型(局部重绘)同样以内嵌于大模型的方式呈现,以 Lora 形式调用,其亮点在于嵌入了 inpaint 功能,这使得直接对图像进行局部重绘和扩展变得轻而易举。inpaint,是指图像修复或补绘,能够对图像中的部分区域进行重新绘制或修复,例如去除图像中的瑕疵、填补缺失部分等,以改善图像质量或实现特定的创意效果。

Redu(风格迁移)x 模型与上述三者原理一致,也是通过调用 Lora 来发挥作用,其功能类似于之前 sd 的 ip - adapter 风格迁移,为图像风格的转换提供了新的途径。

2.四个模型的英文翻译

  • Canny:在 AI 生图中通常指 Canny 边缘检测算法,用于提取图像中的边缘信息,以实现基于边缘的图像生成或控制,比如根据给定的边缘线条来生成完整的图像。

  • Depth:深度信息,可用于生成具有深度感的图像,比如根据深度图来确定物体的远近、层次感等,使生成的图像更加立体真实。

  • Fill:重绘功能,在图像生成中可能涉及到对图像的某些区域进行填充操作,比如填充颜色、纹理等,或者用于根据周围信息来填充图像中的空白或不完整部分,以生成完整的图像内容。

  • Redux:一种用于生成图片变体的模型,可上传图片并通过输入提示词生成不同动作、表情或材质风格的图片,同时保持角色特征的一致性,还能用于图像变化、重新设计等操作,如通过提供图像和提示来重新设计样式,创建具有灵活宽高比的高质量输出。类似ip - adapter的功能:一种风格迁移技术或工具,用于将一种风格应用到图像上,实现图像风格的转换,使生成的图像具有特定的风格特征。

3.Redux 的功能:

  • 保持角色特征一致性:上传一张角色图片,输入简单提示词,即可生成不同动作、表情甚至材质风格的图片,让角色的外貌、风格、特征在生成的新图中和原图保持高度一致。

  • 图像变化和重新设计:给定输入图像,能生成带有轻微变化的图像复制品,对给定的图像进行细化;也能自然地融入到更复杂的流程中,通过提示为图像重新着色。

给角色换指定的服装

4.Redux 模型的操作步骤:

  1. 准备工作:安装 comfyUI 工具,Windows 和 Mac 用户均可使用;下载 redux 模型文件和 clip 视觉模型。将 redux 模型文件放到 comfyUI 的 models/style_models 文件夹,clip 视觉模型放到 models/clip_vision 文件夹。

  2. 加载工作流:打开 comfyUI,把准备好的 redux 工作流直接拖进去,该工作流已配置好必要设置。

  3. 上传图片和输入提示词:在图像加载节点上传想延展的角色图片,在 clip 文本节点输入提示词。

  4. 生成结果:点击生成按钮,稍等片刻(时间取决于显卡性能),redux 模型会根据提示词生成符合描述的图像。

**
这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值