sparkstreaming控制消费速率

Spark 1.5引入反压机制,通过动态数据收集自动适配集群处理能力,解决数据堆积和资源利用率低的问题。RateController作为StreamingListener监听作业完成事件,估算并调整接收速率。用户可通过设置`spark.streaming.backpressure.enabled`为true启用该功能,并通过相关参数调整速率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

反压机制:
spark1.5以后,通过动态收集系统的一些数据来自动的适配集群数据处理能力
在默认情况下,Spark Streaming 通过 receivers (或者是 Direct 方式) 以生产者生产数据的速率接收数据。当 batch processing time > batch interval 的时候,也就是每个批次数据处理的时间要比 Spark Streaming 批处理间隔时间长;越来越多的数据被接收,但是数据的处理速度没有跟上,导致系统开始出现数据堆积,可能进一步导致 Executor 端出现 OOM 问题而出现失败的情况。
而在 Spark 1.5 版本之前,为了解决这个问题,对于 Receiver-based 数据接收器,我们可以通过配置 spark.streaming.receiver.maxRate 参数来限制每个 receiver 每秒最大可以接收的记录的数据;对于 Direct Approach 的数据接收,我们可以通过配置 spark.streaming.kafka.maxRatePerPartition 参数来限制每次作业中每个 Kafka 分区最多读取的记录条数。这种方法虽然可以通过限制接收速率,来适配当前的处理能力,但这种方式存在以下几个问题:
● 我们需要事先估计好集群的处理速度以及消息数据的产生速度;
● 这两种方式需要人工参与,修改完相关参数之后,我们需要手动重启 Spark Streaming 应用程序;
● 如果当前集群的处理能力高于我们配置的 maxRate,而且 producer 产生的数据高于 maxRate,这会导致集群资源利用率低下,而且也会导致数据不能够及时处理。
● 那么有没有可能不需要人工干预,Spark Streaming 系统自动处理这些问题呢?当然有了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值