【Prompt系列】小白上手指南——开启你的Prompt工程实践之路(非常详细)从零基础到精通,收藏这篇就够了!

理论知识固然重要,但Prompt工程的精髓在于实践。对于初学者来说,如何迈出第一步,并持续进步呢?本章将为你提供一份实操性的上手指南,包含心态准备、学习路径建议、实践平台推荐以及一些实用小技巧,希望能助你顺利开启Prompt工程的探索之旅。

1、心态比技能更重要:拥抱学习的心态

在开始实践之前,建立正确的学习心态至关重要:

  • 保持好奇心与探索欲: AI和Prompt工程是一个快速发展的领域,每天都可能有新的发现和技巧。带着好奇心去探索未知,享受学习的过程。
  • 勇于尝试,不怕犯错: 尤其在初期,你设计的Prompt可能无法立即达到预期效果。不要因此气馁,把每一次“失败”都看作是学习和改进的机会。记录下不理想的输出,分析原因,然后调整Prompt再试。
  • 耐心与坚持: Prompt工程能力的提升并非一日之功,它需要持续的练习和积累。给自己足够的时间去实践和领悟,你会发现自己的进步。
  • 开放与分享: 如果有机会,可以与他人交流学习Prompt的心得,或者分享你认为优秀的Prompt案例。教学相长,分享是很好的学习方式。

2、推荐学习路径:从基础到进阶

对于初学者,一个结构化的学习路径可以帮助你更有方向性地前进:

  1. 第一步:理解核心概念
  • 任务: 确保你已经扎实掌握了前两章所讲的“什么是Prompt”和“什么是Prompt工程”的基本定义、构成元素、重要性及核心原则。
  • 方法: 重读相关内容,尝试用自己的话复述这些概念。
  1. 第二步:动手实践简单Prompt
  • 任务: 选择一个你日常可能用到的简单场景(如写一封邮件、总结一段话、翻译一个句子),尝试编写你的第一个Prompt。
  • 方法: 从模仿开始,可以参考一些公开的Prompt示例,然后尝试根据自己的需求进行小幅修改。观察AI的反馈,体会不同表达方式带来的差异。
  1. 第三步:学习常用技巧
  • 任务: 逐步学习并有意识地应用一些基础的Prompt技巧,如角色扮演(Role Prompting)、少量示例(Few-Shot Prompting)、思维链(CoT)的基础用法、以及简单的结构化Prompt。
  • 方法: 针对每个技巧,查找专门的教程或案例进行学习,然后在自己的实践中刻意练习使用。比如,尝试给AI设定一个“老师”的角色来解释概念,或者用CoT方式引导AI解决一个简单的逻辑问题。
  1. 第四步:挑战复杂任务与迭代优化
  • 任务: 尝试将所学的技巧组合应用于更复杂的、多步骤的场景,并进行有意识的迭代优化。例如,让AI帮你策划一个小活动、生成一份简单的市场分析报告草稿等。
  • 方法: 记录下你的初始Prompt和AI的输出,分析不足之处,然后应用优化策略(如任务拆解、更明确的约束、更丰富的上下文)进行改进,对比不同版本Prompt的效果。
  1. 第五步:持续学习与关注前沿
  • 任务: Prompt工程是一个新兴且快速发展的领域。你需要保持学习的热情,关注最新的研究成果、工具和最佳实践。
  • 方法: 阅读行业报告、技术博客、学术论文(如果感兴趣),参与相关的线上社区讨论。

3、实践平台与工具推荐

理论学习后,选择合适的平台进行实践至关重要。以下是一些推荐:

国内大模型平台:

对于中文用户,尤其是初学者,国内的大模型平台通常更友好,对中文的理解和生成能力也经过了大量优化。

  • Kimi Chat (月之暗面): 以其强大的长文本处理能力和流畅的中文对话体验受到好评。
  • 文心一言 (百度): 功能全面,集成了百度的搜索和知识图谱能力。
  • 通义千问 (阿里巴巴): 在多个领域表现均衡,并提供了丰富的API供开发者使用。
  • 提及这些平台,是因为它们通常有免费的试用额度,界面也比较直观,适合新手入门。

国际主流平台:

如果你有一定的英文基础,并希望体验全球领先的模型技术,可以尝试:

  • ChatGPT (OpenAI): 无疑是目前知名度和用户量最高的平台之一。
  • Claude (Anthropic): 以其在安全性和长对话方面的特点受到关注。
  • Gemini (Google): 谷歌推出的强大模型,整合了其搜索和多模态能力。

Prompt学习与分享社区/网站:

  • Prompt Engineering Guide (promptingguide.ai): 一个非常全面和权威的Prompt工程学习资源网站,内容涵盖基础到高级技巧,有中文版本。
  • 各类技术博客、论坛、GitHub仓库: 例如CSDN、知乎、掘金等平台上有很多AI爱好者和专家分享Prompt技巧和案例,GitHub上也有许多Prompt集合项目。

4、初学者实用小贴士

  • 多看多学,先模仿再创造: 主动去阅读和分析他人分享的优秀Prompt案例。看看他们是如何描述问题、设定角色、给出约束的。先从模仿这些优秀案例开始,理解其设计思路,然后再结合自己的需求进行修改和创新。
  • 小步快跑,逐步增加复杂性: 不要一开始就尝试构建非常复杂的Prompt。从解决简单、明确的小问题开始,逐步增加Prompt的元素和约束条件,观察AI反馈的变化,慢慢积累经验。
  • 记录与反思:你的Prompt日记: 强烈建议你为自己的Prompt实践建立一个“日记”或笔记。记录下你设计的每一个重要版本的Prompt、AI给出的反馈、你对结果的分析以及你的改进思路。这对于总结经验教训、跟踪自己的进步非常有帮助。
  • 善用“元Prompt”——让AI帮你优化Prompt: 你甚至可以尝试让AI来帮助你优化你写的Prompt!比如,你可以问AI:“我写了一个这样的Prompt:[你的Prompt内容]。你觉得这个Prompt在清晰度、完整性方面有哪些可以改进的地方吗?请给我一些具体的建议。”这是一种“元认知”的用法,有时能带来意想不到的启发。
  • 关注具体场景,培养“场景感”: 不同的应用场景(如创意写作、代码生成、学习辅导、日常办公、娱乐互动等)对Prompt的需求是不同的。在实践中,要有意识地思考当前任务的特定场景,培养针对不同场景设计Prompt的“感觉”。
  • 使用明确的分隔符: 当Prompt中包含多个部分(如指令、上下文、示例、待处理文本)时,使用清晰的分隔符(如```, ###, —, XML标签等)可以帮助模型更好地区分不同的信息模块,提高理解准确性。
  • 明确告知模型“不要做什么”: 有时候,仅仅告诉模型“要做什么”还不够,明确指出“不要做什么”可以更有效地避免不期望的输出。例如:“…请不要在回答中使用过于口语化的表达。”

5、面向未来的学习

Prompt工程本身也在不断进化。当你掌握了基础之后,可以进一步关注以下一些前沿方向,它们代表了Prompt工程未来重要的发展趋势:

  • 检索增强生成 (Retrieval Augmented Generation - RAG): 这是一种将大模型的生成能力与外部知识库的检索能力相结合的技术。Prompt在RAG系统中扮演着协调检索和生成的关键角色。了解RAG,能让你构建出能回答专业领域知识、避免信息过时问题的AI应用。
  • AI智能体 (AI Agents): AI Agent是指能够自主感知环境、进行决策并执行动作的智能系统。Prompt通常用于定义Agent的目标、可用工具和行动策略。这是当前AI领域一个非常热门的研究方向。
  • 自动化Prompt工程 (Automated Prompt Engineering / Prompt Tuning): 随着技术发展,未来可能会有更多工具和方法来帮助自动生成、评估和优化Prompt,进一步降低人工设计Prompt的门槛。

对这些新技术的了解和学习,将帮助你保持在AI应用领域的前沿。

核心要点回顾
  • 正确心态: 好奇、勇于尝试、耐心坚持。
  • 学习路径: 从理解概念、实践简单Prompt,到掌握常用技巧、挑战复杂任务,再到持续学习前沿。
  • 实践平台: 选择适合自己的国内或国际大模型平台进行练习。
  • 实用技巧: 多看多学、小步快跑、记录反思、利用AI辅助、关注场景、使用分隔符、明确负向约束。
  • 未来方向: 关注RAG、AI Agent、自动化Prompt工程等新技术。

结语:拥抱Prompt工程,共创AI智能新篇章

经过这趟“小白的大模型学习之旅”,我们一同探索了Prompt和Prompt工程的奥秘。从最初对AI如何“听懂话”的好奇,到现在对如何通过精心设计的指令来驾驭其强大能力的初步掌握,我们已经推开了通往更高效、更智能人机协作新时代的大门。

我们再次强调,Prompt是与大语言模型沟通的基石,而Prompt工程则是将这种沟通艺术化、科学化的系统方法论。它不仅仅是一项技术,更是AI时代下一种全新的思维方式和核心技能。学习和掌握Prompt工程,意味着我们能够更精准地表达需求,更有效地激发AI的潜能,无论是用于提升工作效率、辅助学习研究,还是激发创新思维、解决复杂问题,都将为你带来前所未有的助力。

展望未来,Prompt工程的发展方兴未艾。我们可能会看到更加智能化的Prompt辅助工具,帮助我们自动生成和优化指令;Prompt的形态也可能从单一文本扩展到多模态输入;它还将与RAG、AI Agent等前沿AI技术更深度地融合,诞生出更加强大和自主的AI应用,为各行各业带来颠覆性的变革。学习Prompt工程,就是为迎接这样的未来做好准备。

“纸上得来终觉浅,绝知此事要躬行。” 现在,是时候将所学付诸实践了。不要犹豫,从一个小小的需求开始,动手编写你的第一个Prompt,尝试与AI进行一次有目的、有策略的对话。在这个过程中,你可能会遇到挑战,但更多的是发现和成长的喜悦。每一次成功的引导,每一次AI给出的惊喜回应,都将是你在这条探索之路上最好的鼓励。

拥抱Prompt工程,就是拥抱AI时代的无限可能。让我们一起,用智慧的指令,与AI共同谱写更加精彩的智能新篇章。你的AI探索之旅,才刚刚开始!

那么,你准备好向你的AI伙伴发出第一个精心设计的Prompt了吗?

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**

一、2025最新大模型学习路线

一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1级别:AI大模型时代的华丽登场

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。

L2级别:AI大模型RAG应用开发工程

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3级别:大模型Agent应用架构进阶实践

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。

L4级别:大模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。

二、大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

三、大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

四、大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

五、大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值