Translating Embeddings for Modeling Multi-relational Data
- Abstract
在低位向量空间中,嵌入多关系数据的实体与关系。提出一个规范模型,易于训练,包含较少的参数,并且可以扩展到非常大的数据库。TransE就是在低维嵌入中,一种通过对实体进行翻译来建模关系的方法。
- Background
聚类算法和矩阵分解算法在单一关系模型上有着非凡的共性,基于这两种方法,因此现有的多种关系模型方法,也是在设计在隐藏参数的关系学习的框架中。例如隐变量模型、能力模型、张量分解模型、矩阵分解模型等。
许多最新的方法都集中在提高模型的表达性和通用性,以学习在低维空间中嵌入实体。这些模型的更大的表达性是以模型复杂性的大幅增加为代价的,这导致了难以解释的建模假设和更高的计算成本。此外,这种方法可能会受到过度拟合的影响,因为这种高容量模型的适当正则化很难设计。
事实上,[A semantic matching energy function for learning with multi-relational data]显示了一个更简单的模型(线性而不是双线性)在几个具有相对大量不同关系的多关系数据集上取得了几乎与最有表达能力的模型一样好的性能。这表明,即使在复杂和异构的多关系领域中,简单而适当的建模假设也可以在准确性和可伸缩性之间做出更好的权衡。