位图,布隆过滤器的原理和实现

位图

所谓位图,就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景,通常是用来判断某个数据是否存在
比方说现在有40亿个未排序的无符号整数,请问如何判断一个数是否存在于这40亿个数中?
这个问题就很适合用位图来解决,题目中说这些数据都是无符号整数而无符号整数最大能取到0xffffffff(约43亿),并且题目只要求我们判断该数据是否存在,因此我们只需要用一个比特位来标识该数值是否存在即可
在这里插入图片描述
如上图,插入了1, 3, 7三个数据,我们只要把第1, 3, 7个比特位赋值1即可。

namespace ssj
{
	template<size_t N>
	class bitset
	{
	public:
		bitset()
		{
			// 初始化,因为/向下取整,因此我们分配一个字节即可
			_bits.resize(N / 8 + 1, 0);
		}
		void set(size_t x) // 标记该数存在
		{
			size_t i = x / 8;
			size_t j = x % 8;
			_bits[i] |= (1 << j);
		}
		void reset(size_t x)
		{
			size_t i = x / 8;
			size_t j = x % 8;
			_bits[i] &= (~(1 << j));
		}
		bool test(size_t x) // 检查该数是否存在
		{
			size_t t = x / 8;
			size_t j = x % 8;
			return _bits[i] & (1 << j);
		}

	private:
		std::vector<char> _bits;
	};
}

template<size_t N>
class TwoBitSet
{
public:
	void Set(size_t x)
	{
		if (!bs1.test(x) && !_bs2.test(x))
		{
			_bs2.set(x);
		}
		else if (!_bs1.test(x) && _bs2.test(x))
		{
			_bs1.set(x);
			_bs2.reset(x);
			// 10 表示已经出现2次或以上,不用处理
		}
	}
	void PrintOnceNum()
	{
		for (size_t i = 0; i < N; ++i)
		{
			if (!_bs1.teset(i) && _bs2.test(i))
			{
				cout << i << endl;
			}
		}
	}

private:
	ssj::bitset<N> _bs1;
	ssj::bitset<N> _bs2;
};

布隆过滤器

位图固然是一种非常优秀的结构,他不仅节省空间而且效率高,但他也有一个很大的局限性——只能处理整数。对字符串和自定义类型对象位图没办法处理。原因很直观,对整型来讲,不管是长整型还是无符号整型数据,他们的数量终究是有限并且可以很简单的和某个位置一一对应,但是字符串的非常数量非常多,其中字符的增多和减少,或者位置的互换都会形成新的字符串,因此在有限的比特位中若我们想给每个字符串都提供一个比特位,那么必然会造成位置冲突的局面。现在要介绍的布隆过滤器可以比较有效的解决这个问题。

概念

布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的一种紧凑型的,比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你“某样东西一定不存在或可能存在”,它是用多个哈希函数,将一个数据映射到 位图结构中,此种方式不仅可以提升查询效率,也可以节省大量的内存空间。

代码

#include <bitset>
#include <string>
#include <time.h>

using namespace std;

/*下面三个都是哈希函数,可以自行选择合
适的哈希函数,数量最好控制在3-5个*/
struct BKDRHash
{
	size_t operator()(const string& s)
	{
		// BKDR
		size_t value = 0;
		for (auto ch : s)
		{
			value *= 31;
			value += ch;
		}
		return value;
	}
};

struct APHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 0;
		for (long i = 0; i < s.size(); i++)
		{
			if ((i & 1) == 0)
			{
				hash ^= ((hash << 7) ^ s[i] ^ (hash >> 3));
			}
			else
			{
				hash ^= (~((hash << 11) ^ s[i] ^ (hash >> 5)));
			}
		}
		return hash;
	}
};

struct DJBHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 5381;
		for (auto ch : s)
		{
			hash += (hash << 5) + ch;
		}
		return hash;
	}
};
// X代表我们所给的比特位是数据量的几倍
template <size_t N,
	size_t X = 8,
	class K = string,
	class HashFunc1 = BKDRHash,
	class HashFunc2 = APHash,
	class HashFunc3 = DJBHash>
class BloomFilter
{
public:
	void Set(const K& key)
	{
		size_t len = X * N;
		size_t index1 = HashFunc1()(key) % len;
		size_t index2 = HashFunc2()(key) % len;
		size_t index3 = HashFunc3()(key) % len;

		_bs.set(index1);
		_bs.set(index2);
		_bs.set(index3);
	}
	// 检查该数据是否存在
	bool Test(const K& key)
	{
		size_t len = X * N;
		size_t index1 = HashFunc1()(key) % len;
		if (_bs.test(index1) == false) return false;

		size_t index2 = HashFunc2()(key) % len;
		if (_bs.test(index2) == false) return false;

		size_t index3 = HashFunc3()(key) % len;
		if (_bs.test1(index3) == false) return false;

		return true;
	}

private:
	bitset<X* N> _bs;
};

删除

布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素。
一种删除方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给计数器加一,删除时减一,通过多占用几倍存储空间的代价来增加删除操作。

布隆过滤器的优点

  1. 增加和查询元素的时间复杂度为O(K),(K为哈希函数的个数,一般比较小),与数据量大小无关
  2. 哈希函数相互之间没有关系,方便硬件并行运算
  3. 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势
  4. 在能够承受一定的误判时,布隆过滤器比其他数据结构有很大的空间优势
  5. 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能
  6. 使用同一组散列函数的布隆过滤器可以进行交、并、差运算

布隆过滤器的缺点

  1. 有误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中(补救方法:再建立一个白名单,存储可能会误判的数据)
  2. 不能获取元素本身
  3. 一般情况下不能从布隆过滤器中删除元素
  4. 如果采用计数方式删除,可能会存在回绕问题
<think>好的,用户想了解C++位图布隆过滤器的相关知识及总结,我需要结合提供的引用资料来组织回答。首先,我应该先明确位图布隆过滤器的基本概念,然后讨论它们的实现应用,最后总结它们的优缺点应用场景。 首先看位图部分。根据引用[3],位图用于处理海量数据的存在性判断,比如40亿个整数去重。位图通过每个bit位表示一个数据是否存在,节省空间。需要提到位图数据结构设计,比如用vector<bool>或直接操作比特位。实现部分可能需要给出C++的代码示例,比如设置某位为1,清除为0,检查存在性。应用方面包括快速查找、去重、排序等,引用[2][3]都有提到这些应用。 然后是布隆过滤器。根据引用[4],布隆过滤器是概率型数据结构,用于判断元素可能存在或一定不存在。它使用多个哈希函数映射到不同的位,引用[3][4]都提到了这一点。实现部分需要说明插入查找的过程,以及为什么不能删除,或者如何支持删除(可能需要引用计数)。应用方面,引用[5]提到了缓存穿透的解决方案,防止数据库被无效查询压垮。此外,分布式系统爬虫中的URL去重也是常见应用。 需要注意布隆过滤器的优缺点,比如空间效率高但存在误判率,无法删除元素等。引用[4][5]都有相关描述。可能需要比较位图布隆过滤器的适用场景,比如位图适合精确判断且数据范围小的情况,而布隆过滤器适合大数据量且允许一定误判的情况。 代码实现部分,位图可以用bitset或手动操作位,布隆过滤器则需要多个哈希函数位图的组合。需要确保示例代码正确,比如展示如何设置位,检查存在性,以及布隆过滤器的插入查询步骤。 最后总结部分,需要将位图布隆过滤器的核心点对比,强调它们在海量数据处理中的重要性,并结合引用中的内容,如引用[1]提到的结合位图布隆过滤器的方案,可能可以提到这种混合结构在优化空间查询速度上的优势。 现在需要检查是否有遗漏的引用内容,比如引用[1]提到结合位图布隆过滤器的优点,这可能是在实际应用中的优化策略,需要在总结部分提到。同时,用户要求生成相关问题,需要根据内容设计相关问题,比如应用场景、实现细节、优缺点比较等。 需要注意回答的结构,先讲位图,再讲布隆过滤器,每个部分包括概念、实现、应用,最后总结对比。确保引用标识正确添加,例如在提到布隆过滤器概念时加上[^4],在缓存穿透时引用[^5]等。</think>### C++位图布隆过滤器总结 #### 一、位图(Bitmap) **1. 概念与实现** 位图通过每个比特位(bit)表示一个数据的存在性(0/1),适用于海量数据的快速存在性判断[^3]。例如,40亿个整数(约16GB)用位图仅需约500MB内存。 **C++实现示例**: ```cpp class Bitmap { private: std::vector<uint32_t> bits; // 使用uint32_t数组存储位 public: Bitmap(size_t range) : bits((range >> 5) + 1, 0) {} // 计算需要多少32位块 void set(size_t x) { size_t index = x >> 5; // 确定数组下标 size_t offset = x % 32; // 确定比特位偏移 bits[index] |= (1 << offset); } bool test(size_t x) { size_t index = x >> 5; size_t offset = x % 32; return (bits[index] & (1 << offset)) != 0; } }; ``` **2. 应用场景** - **数据去重**:如统计40亿整数中不重复的数字。 - **快速查询**:判断IP是否在黑名单中。 - **排序**:对有限范围的整数进行非比较排序[^2]。 --- #### 二、布隆过滤器(Bloom Filter) **1. 概念与实现** 布隆过滤器通过$k$个哈希函数将元素映射到多个位,若所有对应位为1则“可能存在”,否则“一定不存在”[^4]。牺牲一定准确性换取极高的空间效率。 **C++实现核心逻辑**: ```cpp class BloomFilter { private: Bitmap bitmap; size_t k; // 哈希函数数量 public: BloomFilter(size_t size, size_t k) : bitmap(size), k(k) {} void add(const std::string& key) { for (size_t i = 0; i < k; ++i) { size_t hash = std::hash<std::string>{}(key + std::to_string(i)); bitmap.set(hash % bitmap.size()); } } bool contains(const std::string& key) { for (size_t i = 0; i < k; ++i) { size_t hash = std::hash<std::string>{}(key + std::to_string(i)); if (!bitmap.test(hash % bitmap.size())) return false; } return true; // 可能存在(有一定误判率) } }; ``` **2. 应用场景** - **缓存穿透防护**:拦截不存在的数据请求,保护数据库。 - **分布式系统**:减少节点间冗余数据传输。 - **爬虫URL去重**:避免重复抓取已处理的页面[^3]。 **3. 优缺点** - **优点**:空间效率高,查询时间$O(k)$,适合海量数据[^4]。 - **缺点**:误判率随元素增加而上升,且不支持删除(除非引入计数布隆过滤器)。 --- #### 三、对比与总结 | **特性** | **位图** | **布隆过滤器** | |------------------|------------------------------|------------------------------| | **数据范围** | 适用于整数且范围较小 | 支持任意数据类型 | | **误判率** | 无 | 有(可调整哈希函数数量优化) | | **删除支持** | 直接修改位即可 | 需额外结构(如计数位图) | | **典型场景** | 精确存在性判断 | 允许误判的存在性预筛 | **混合优化方案**:结合位图布隆过滤器,例如用位图处理高频数据,布隆过滤器处理低频数据,提升整体性能[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JayceSun449

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值