sigmoid函数

σ ( x ) = 1 1 + e − x \sigma(x)=\frac1{1+e^{-x}} σ(x)=1+ex1

sigmoid函数好处

1. σ ( x ) \sigma(x) σ(x)的域值是[0,1] ,在(-∞, +∞)单调递增,很符合概率分布函数的特点
2.以 σ ( x ) \sigma(x) σ(x)为分布函数的概率密度函数在远离零点的位置概率趋近于0,这样比较符合现实生活中的一些规律,即在一定基准线上下浮动,大部分在基准线
3.不同于高斯分布, σ ( x ) \sigma(x) σ(x)比较容易求导,即 σ ( x ) ′ = σ ( x ) ( 1 − σ ( x ) ) \sigma(x)^{'}=\sigma(x)(1-\sigma(x)) σ(x)=σ(x)(1σ(x))对计算机比较友好
4. σ ( x ) \sigma(x) σ(x)同样也可以伸缩变换和平移,如
σ ( x ) = u 1 + e − x \sigma(x)=\frac{u}{1+e^{-x}} σ(x)=1+exu
u是上限阈值
在这里插入图片描述

Fig. 1.1 sigmoid函数-概率分布函数

在这里插入图片描述

Fig. 1.2 sigmoid函数的导数-概率密度函数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值