大模型压缩:使用Fisher信息从低秩表示模型

费雪信息

之前写过的文章20240616日志:大模型压缩方法DMS里具体介绍了费雪信息,在一组观测数据中,Fisher信息量越大,对未知参数的估计就越准确。
I w def = E [ ( ∂ ∂ w log ⁡ p ( D ∣ w ) ) 2 ] (1) I_w^{\text{def}}=\mathbb{E}\left[\left(\frac{\partial}{\partial w}\log p(\mathcal{D}|w)\right)^2\right]\tag{1} Iwdef=E[(wlogp(Dw))2](1)
但是,Fisher信息量计算代价太大。

FWSVD: Fisher-Weighted SVD

寻求一个基于经验的费雪信息量 I w e m p I_w^{\mathrm{emp}} Iwemp,用公式2表示
I w d e f ≈ I w e m p = 1 ∣ D ∣ ∑ i = 1 ∣ D ∣ ( ∂ ∂ w L ( d i ; w ) ) 2 (2) I_w^{\mathrm{def}}\approx I_w^{\mathrm{emp}}=\frac{1}{|\mathcal{D}|}\sum_{i=1}^{|\mathcal{D}|}\left(\frac{\partial}{\partial w}\mathcal{L}\left(d_i;w\right)\right)^2\tag{2} IwdefIwemp=D

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值