【R语言】AUC值的检验(单样本t检验)

本文通过使用t.test函数,对比了模型的AUC值与六位医生诊断的AUC值的平均水平,旨在判断两者是否存在显著差异。代码示例展示了如何进行两样本t检验,为模型评估提供了统计学依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源
  • 函数:t.test
目的
  • 判断模型的AUC值与多位医生的AUC值(平均水平)是否有显著差异
代码
auc_rads = c(0.750, 0.761, 0.854, 0.729, 0.834, 0.851) # 六位医生诊断的AUC值
auc_cnn = 0.884 # 模型的AUC值

t.test(auc_rads, alternative = "two.sided", mu=auc_cnn)

参考资料:

  1. https://www.jianshu.com/p/9606bb1d38c6
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值