HDU 1300 Pearls (DP)

本文介绍了一种使用动态规划(DP)解决特定珠宝价值优化问题的方法。该问题要求连续替换珠宝以达到整体价值最小化。文章给出了详细的AC代码实现,并讨论了如何通过最优子结构寻找全局最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路:

DP题型一般找状态转移方程考虑应从整体出发,到局部,再通过最优子结构到整体最优,其次就是边界问题的考虑,一般是从底向上考虑,得出边界。

 

此题最主要的考虑是不能跳跃的用质量大的珠宝来代替质量小的珠宝,只能连续的代替;

AC代码:

#include<stdio.h>
#define inf 0x3f3f3f3f
struct node
{
  int ai;
  int pi;
}a[101];
int dp[101];
int sum[101];
int main()
{
    int T;
    int c;
    int i,j;
    int min;
    scanf("%d",&T);
    while(T--)
    {
       scanf("%d",&c);
       sum[0]=0;
       for(i=1;i<=c;i++)
       {
          scanf("%d%d",&a[i].ai,&a[i].pi);
          sum[i]=sum[i-1]+a[i].ai;
       }
       dp[0]=0;
       for(i=1;i<=c;i++)
       {
         min=inf;
         for(j=0;j<i;j++)
           if(min>dp[j]+(sum[i]-sum[j]+10)*a[i].pi)
                min=dp[j]+(sum[i]-sum[j]+10)*a[i].pi;
         dp[i]=min;
       }
       printf("%d\n",dp[c]);
    }
    return 0;
}


 

内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取与跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换与深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值