Flink窗口机制

文章目录

(一)窗口分类

(二)

一、窗口分类

  • 键控窗口 和 非键控窗口
  • 时间窗口 和 计数窗口
  • 滑动窗口 和 滚动窗口
  • 会话窗口

根据窗口不同的分类规则,大致可以分为上面几种。从上至下,更加具体。比如,键控窗口和非键控窗口都可以调定义时间窗口和计数窗口;而时间窗口和计数窗口,都可以定义滑动窗口和滚动窗口;另外,在时间窗口中,还有一个特例,就是会话窗口。

二、键控窗口 和 非键控窗口

根据在开窗之前,是否执行了 keyBy() 操作,分为 键控窗口 和 非键控窗口。

顾名思义,键控窗口,作用在键控流上,具有相同key的数据流到一个逻辑流中,后续调用 window()或timeWindow()、countWindow(),使用的都是键控窗口;非键控窗口,作用在非键控流上,原始流不会拆分成多个流。

注意,在键控流上,具有相同key的数据流到一个逻辑流中,由后续的同一个subtask处理,同时,同一个subtask上可能会处理多个key的逻辑流;非键控窗口,作用在非键控流上,原始流不会拆分成多个流,所有窗口的逻辑由单个任务执行,即并行度为1,所有数据都由同一个subtask处理。所以,在非键控窗口上设置并行度并不会很好地改善并行处理能力,因为所有的数据都由一个subtask处理,并没有提高并行处理能力。

如果在后续调用自定义窗口,键控窗口Function 继承的是 RichWindowFunction,非键控窗口Function 继承的是 RichAllWindowFunction

三、时间窗口 和 计数窗口

时间窗口,根据时间来划分窗口,可以是时间时间eventTime,也可以是处理时间processTime;计数窗口,根据数据量划分窗口。

四、滑动窗口 和 滚动窗口

时间窗口 和 计数窗口上,都可以使用滑动窗口 和 滚动窗口。

滑动窗口:设置窗口大小 和 滑动步长,数据可能会重复(size>slide),也可能会遗漏(size>slide),也可能数据既不重复,也不遗漏(size=slide)。

滚动窗口:设置窗口大小。数据不会重复,也不会遗漏。

下面举例说明

1、滑动时间窗口

size=10s,slide=5s,每5秒计算最近10秒钟的数据,每个窗口会有5秒钟的数据和上一个窗口重复;

size=5s,slide=10s,每10秒计算最近5秒钟的数据,每个窗口触发计算时,会有5s的数据遗漏,没有被计算到;

 

size=10s,slide=10s,每10秒计算最近10秒钟的数据,每个窗口会的数据和上一个窗口都不会重复;

 

2、滚动时间窗口

设置窗口长度,每个窗口关闭之后,往后滚动,开始下一个窗口;类似于窗口长度和滑动步长相同的滑动时间窗口;

 3、计数滑动窗口

和时间没有关系,只跟数据量有关系。

size=5,slide=2,每2条计算最近5条数据,每个窗口会有3条数据和上一个窗口重复;

 size=2,slide=5,每5条计算最近2条数据,每个窗口会有3条数据遗漏,没有计算到;

 size=5,slide=5,每5条计算最近5条数据,每个窗口的数据和上个窗口数据都不会重复,同时数据也不会遗漏;

4、滚动时间窗口

 设置窗口长度,每个窗口关闭之后,往后滚动,开始下一个窗口;类似于窗口长度和滑动步长相同的滑动计数窗口;

五、会话窗口

会话窗口,只存在于时间窗口中,在指定的时间间隔内,没有新的数据进来,则关闭窗口,执行计算逻辑。

六、窗口类型结构图

 

以上,是对窗口学习的简单总结。如有不同见解,欢迎交流。

<think>好的,我现在需要回答用户关于Apache Flink窗口函数的使用教程和示例的问题。首先,我得确保自己理解Flink窗口的基本概念,然后按照用户的要求结构清晰、分步骤说明,并且结合示例代码。 首先,用户提到了窗口分配器和窗口函数,这部分是关键。根据引用[2],窗口操作分为这两个部分,所以我的回答应该明确区分这两个部分。我需要解释窗口分配器的类型,比如时间窗口、计数窗口、会话窗口等,并给出对应的代码示例。比如,滚动窗口和滑动窗口的区别,以及如何用Flink的API来实现。 接下来是窗口函数部分,用户可能想知道如何处理窗口内的数据。这里需要提到增量聚合函数(如ReduceFunction, AggregateFunction)和全量窗口函数(如ProcessWindowFunction)。引用[2]中的代码示例展示了aggregate方法的使用,但用户可能也需要全量处理的例子,比如使用ProcessWindowFunction的情况。需要注意,非按键分区的窗口(windowAll)无法并行处理,这点在引用[2]中也有提到,所以需要特别说明。 然后,用户需要教程和示例,我需要提供具体的代码示例,包括如何定义窗口,如何应用聚合函数或处理函数。比如,一个简单的按时间滚动的窗口,计算每个窗口内的总和或平均值。同时,要确保代码语法正确,并符合Flink的最新API规范,避免使用过时的方法。 另外,用户的问题中引用了两处资料,我需要正确地在回答中标注引用。例如,在讲解窗口分配器时提到非按键分区的情况,可以引用[^2]。在代码示例部分,如果参考了相关的教程,也要添加引用标识。 还要注意用户提到的系统级指令,比如使用中文回答,数学公式的正确格式,生成相关问题等。这里的问题是关于Flink窗口,所以生成的三个问题需要围绕窗口函数的相关概念、使用场景和常见问题展开。 现在,我需要组织这些内容,确保结构清晰。可能的结构是:先介绍窗口的基本概念,然后分步骤讲解窗口分配器和窗口函数,给出代码示例,最后总结应用场景和注意事项。在每个关键点后添加引用标识,如[^2]。 还需要检查示例代码是否正确,比如使用.keyBy(...).window(...).aggregate(...)的结构,以及ProcessWindowFunction的使用方法是否正确。同时,要确认是否提到了并行度的限制,尤其是在使用windowAll时,这点很重要,避免用户在使用时出现性能问题。 最后,生成的相关问题要具体,比如窗口类型的选择、如何优化窗口处理性能、处理迟到数据的机制等,这些都是用户可能会进一步询问的问题。</think>### Apache Flink窗口函数使用教程 #### 一、窗口基础概念 在流处理中,窗口(Window)用于将无界数据流划分为有限大小的“数据块”,以便进行聚合、统计等操作。Flink提供了多种窗口类型,核心组件包括**窗口分配器(Window Assigners)**和**窗口函数(Window Functions)**。 #### 二、窗口操作步骤 1. **定义窗口分配器** 通过`.window()`方法指定窗口类型: - **时间窗口** - 滚动时间窗口:`TumblingProcessingTimeWindows.of(Time.seconds(5))` - 滑动时间窗口:`SlidingProcessingTimeWindows.of(Time.seconds(10), Time.seconds(5))` - **计数窗口** - 滚动计数窗口:`.countWindow(100)` - **会话窗口** - 会话间隔:`.window(EventTimeSessionWindows.withGap(Time.minutes(5)))` 2. **选择窗口函数** - **增量聚合函数**(逐条处理,内存效率高) 示例:`ReduceFunction`, `AggregateFunction` ```java .aggregate(new AverageAggregate()) ``` - **全量窗口函数**(窗口闭合后处理,可访问窗口元数据) 示例:`ProcessWindowFunction` ```java .process(new CustomProcessFunction()) ``` #### 三、完整代码示例 ```java // 数据源:包含时间戳和数值的传感器流 DataStream<SensorReading> sensorData = ...; // 按键分区后定义窗口 DataStream<Double> result = sensorData .keyBy(SensorReading::getSensorId) .window(TumblingProcessingTimeWindows.of(Time.seconds(5))) .aggregate(new AverageAggregate()); // 自定义聚合函数(增量计算) public static class AverageAggregate implements AggregateFunction<SensorReading, Tuple2<Double, Integer>, Double> { @Override public Tuple2<Double, Integer> createAccumulator() { return Tuple2.of(0.0, 0); } @Override public Tuple2<Double, Integer> add(SensorReading value, Tuple2<Double, Integer> accumulator) { return Tuple2.of(accumulator.f0 + value.getValue(), accumulator.f1 + 1); } @Override public Double getResult(Tuple2<Double, Integer> accumulator) { return accumulator.f0 / accumulator.f1; } @Override public Tuple2<Double, Integer> merge(Tuple2<Double, Integer> a, Tuple2<Double, Integer> b) { return Tuple2.of(a.f0 + b.f0, a.f1 + b.f1); } } ``` #### 四、关键注意事项 1. **并行度限制** 使用`windowAll`时数据不分区,无法并行处理,需谨慎用于高吞吐场景[^2]。 2. **时间语义选择** 可通过`env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)`指定事件时间。 3. **迟到数据处理** 使用`allowedLateness`定义允许延迟: ```java .window(...) .allowedLateness(Time.seconds(10)) .sideOutputLateData(lateOutputTag) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值