Python机器学习中将重要特征可视化的方法

本文介绍了一个实用的方法,用于可视化机器学习中的特征重要性,并通过一个具体实例展示了如何使用Python实现这一过程。该方法能帮助理解模型对不同特征的依赖程度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近读到了一本书,《Python机器学习经典实例》,里面有很多的机器学习实例,入门干货满满啊~

其中,有段代码,能够将重要特征可视化,并且降序排列,如下所示:

def plot_feature_importances(feature_importances,title,feature_names):
#     将重要性值标准化
    feature_importances = 100.0*(feature_importances/max(feature_importances))
#     将得分从高到低排序
    index_sorted = np.flipud(np.argsort(feature_importances))
#     让X坐标轴上的标签居中显示
    pos = np.arange(index_sorted.shape[0])+0.5
    
    plt.figure(figsize=(16,4))
    plt.bar(pos,feature_importances[index_sorted],align='center')
    plt.xticks(pos,feature_names[index_sorted])
    plt.ylabel('Relative Importance')
    plt.title(title)
    plt.show() 

执行这段代码:

plot_feature_importances(rfr.feature_importances_,'Random Forest regressor',feature_names) 

输出如图所示:


评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值