Ubuntu安装cuda与cudnn,亲测可用

本文详细记录了解决现场显卡驱动问题及CUDA、cuDNN的安装步骤,包括自动选择驱动、CUDA版本选择与安装、避免安装驱动提示错误,对开发者极具实用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

前段时间被派到现场去部署算法,之前同事搭好cuda的环境不好用了,具体表现为:
1.屏幕的分辨率显示很奇怪且不可调节
2.输入nvidia-smi命令,显示Failed to initialize NVML: Driver/library version mismatch错误
不得以在现场重装了显卡驱动cudacudnn,故以本文记之。


一、安装显卡驱动

这里介绍笔者感觉比较方便的一种方法
在终端输入:ubuntu-drivers devices,得到有关本机显卡其驱动的相关信息,如图所示(因为本地服务器已经安装了驱动,这里笔者通过SSH只做过程演示):
在这里插入图片描述
可以看到nvidia-driver-470为推荐版本,如果你认可推荐版本,那只需要输入sudo ubuntu-drivers autoinstall 就可以自动安装了;
如果你想安装nvidia-driver-510,只需输入sudo apt install nvidia-driver-510便可安装了,当然也可以通过此命令安装推荐的版本。若apt install 安装失败可以通过aptitude install尝试安装,即sudo aptitude install nvidia-driver-510
安装完成后nvidia-smi 测试有没有安装成功,如果出现如下输出即为安装成功:
在这里插入图片描述
因为本地服务器之前已经安装了驱动,笔者就没有重新安装,若按照上述流程此时表红框部分应该显示470510版本,推荐的cuda版本为11.4。我们选择的cuda版本不高于推荐版本即可。

二、安装cuda

nvidia官网选择cuda版本:https://developer.nvidia.com/cuda-toolkit-archive

在这里插入图片描述
这里根据自己的需要选着版本,但是不要高于系统推荐版本。笔者这里选用11.1.0
在这里插入图片描述
这里我们选择runfile(local)的安装方式

wget https://developer.download.nvidia.com/compute/cuda/11.1.0/local_installers/cuda_11.1.0_455.23.05_linux.run
sudo sh cuda_11.1.0_455.23.05_linux.run

在运行sudo sh cuda_11.1.0_455.23.05_linux.run时,不要安装驱动、不要安装驱动、不要安装驱动,重要的事情说三遍,操作为:选择continue->输入accept->按空格取消Driver选项->选择Install安装。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
安装完成后需要配置环境变量:

vim ~/.bashrc

在末尾添加:

export PATH=$PATH:/usr/local/cuda/bin  
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64  
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda/lib64

最后,

source ~/.bashrc

使之生效。


三、安装cudnn

官网下载cuda对应版本的cudnnhttps://developer.nvidia.com/rdp/cudnn-archive#a-collapse805-111
这里我们选择的是8.0.5.39版本的cudnn
下载一下三个文件:
在这里插入图片描述
在这里插入图片描述

sudo dpkg -i libcudnn8_8.0.5.39-1+cuda11.1_amd64.deb
sudo dpkg -i libcudnn8-dev_8.0.5.39-1+cuda11.1_amd64.deb
sudo dpkg -i libcudnn8-samples_8.0.5.39-1+cuda11.1_amd64.deb

查看cudnn版本:

dpkg -l | grep cudnn

在这里插入图片描述


总结

显卡驱动、cuda、cudnn之前也尝试过很多种方法,但综合体验下来本文方法是最为方便快捷的。
参考文档:
https://blog.csdn.net/qq_42751676/article/details/121001049?utm_source=app&app_version=5.5.0&code=app_1562916241&uLinkId=usr1mkqgl919blen
https://blog.csdn.net/NCU_Wang/article/details/123612184?utm_source=app&app_version=5.5.0&code=app_1562916241&uLinkId=usr1mkqgl919blen

如果阅读本文对你有用,欢迎一键三连呀!!!
2022年6月2日18:01:03
在这里插入图片描述

### 安装 cuDNN 9.8.0 的步骤 为了在 Ubuntu 上成功安装 cuDNN 9.8.0 版本,需遵循特定的操作流程以确保兼容性稳定性。以下是详细的指导: #### 准备工作 确认已正确配置并运行 WSL2-Ubuntu 环境,并已经完成 CUDA安装[^1]。 #### 下载 cuDNN 访问 NVIDIA 官方网站获取适用于所使用的 CUDA 版本的 cuDNN 库。对于 cuDNN 9.8.0,应选择之匹配的 CUDA 版本进行下载。 #### 解压文件 下载完成后解压缩 tar 文件到指定目录下: ```bash tar -xzvf cudnn-<version>-linux-x64-v*-cuda*.tgz ``` #### 复制库文件至相应位置 将解压后的文件复制到 CUDA 已经存在的路径中去: ```bash sudo cp cuda/include/cudnn*.h /usr/local/cuda/include/ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ``` #### 更新环境变量 编辑 `~/.bashrc` 或者 `/etc/profile.d/cuda.sh` 添加如下内容来更新 PATH LD_LIBRARY_PATH 变量以便于命令行识别新加入的库: ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH source ~/.bashrc ``` #### 验证安装 通过执行简单的 Python 脚本来验证 TensorFlow 是否能够检到 GPU 加速支持以及正确的 cuDNN 版本号: ```python import tensorflow as tf print(tf.test.is_built_with_cuda()) print(tf.config.list_physical_devices('GPU')) ``` 如果一切正常,则说明 cuDNN 成功安装并且可以被框架正常使用。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值