Java8新特性Lambda表达式&Stream流&方法引用最全集锦

本文详细介绍了Java8的Lambda表达式、Stream流和方法引用的使用,包括如何创建和操作流,如随机数流、范围操作、映射、过滤等。通过实例展示了在数据处理、文件读取、函数式编程中的应用,如计算斐波那契数列、处理Map、文件内容转单词流等。文章还探讨了Optional对象的创建和操作,以及如何在Stream中组合流和处理Optional结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

List bubbles = Arrays.asList(new Bubble(1), new Bubble(2), new Bubble(3));

System.out.println(bubbles.stream()

.mapToInt(b -> b.i)

.sum());

Set w = new HashSet<>(Arrays.asList(“It’s a wonderful day for pie!”.split(" ")));

w.stream()

.map(x -> x + " ")

.forEach(System.out::print);

System.out.println();

Map<String, Double> m = new HashMap<>();

m.put(“pi”, 3.14159);

m.put(“e”, 2.718);

m.put(“phi”, 1.618);

m.entrySet().stream()

.map(e -> e.getKey() + ": " + e.getValue())

.forEach(System.out::println);

}

}

输出结果:

6

a pie! It’s for wonderful day

phi: 1.618

e: 2.718

pi: 3.14159

  • 创建 List<Bubble> 对象后,只需简单调用所有集合中都有stream()

  • 中间操作 map() 会获取流中的所有元素,并且对流中元素应用操作从而产生新的元素,并将其传递到后续的流中。通常 map() 会获取对象并产生新的对象,但在这里产生了特殊的用于数值类型的流。例如,mapToInt() 方法将一个对象流(object stream)转换成为包含整型数字的 IntStream

  • 通过调用字符串的 split()来获取元素用于定义变量 w

  • 为了从 Map 集合中产生流数据,我们首先调用 entrySet() 产生一个对象流,每个对象都包含一个 key 键以及与其相关联的 value 值。然后分别调用 getKey()getValue() 获取值。

[](()随机数流

Random 类被一组生成流的方法增强了。代码示例:

// streams/RandomGenerators.java

import java.util.*;

import java.util.stream.*;

public class RandomGenerators {

public static void show(Stream stream) {

stream

.limit(4)

.forEach(System.out::println);

System.out.println("++++++++");

}

public static void main(String[] args) {

Random rand = new Random(47);

show(rand.ints().boxed());

show(rand.longs().boxed());

show(rand.doubles().boxed());

// 控制上限和下限:

show(rand.ints(10, 20).boxed());

show(rand.longs(50, 100).boxed());

show(rand.doubles(20, 30).boxed());

// 控制流大小:

show(rand.ints(2).boxed());

show(rand.longs(2).boxed());

show(rand.doubles(2).boxed());

// 控制流的大小和界限

show(rand.ints(3, 3, 9).boxed());

show(rand.longs(3, 12, 22).boxed());

show(rand.doubles(3, 11.5, 12.3).boxed());

}

}

输出结果:

-1172028779

1717241110

-2014573909

229403722

++++++++

2955289354441303771

3476817843704654257

-8917117694134521474

4941259272818818752

++++++++

0.2613610344283964

0.0508673570556899

0.8037155449603999

0.7620665811558285

++++++++

16

10

11

12

++++++++

65

99

54

58

++++++++

29.86777681078574

24.83968447804611

20.09247112332014

24.046793846338723

++++++++

1169976606

1947946283

++++++++

2970202997824602425

-2325326920272830366

++++++++

0.7024254510631527

0.6648552384607359

++++++++

6

7

7

++++++++

17

12

20

++++++++

12.27872414236691

11.732085449736195

12.196509449817267

++++++++

为了消除冗余代码,我创建了一个泛型方法 show(Stream<T> stream) (在讲解泛型之前就使用这个特性,确实有点作弊,但是回报是值得的)。类型参数 T 可以是任何类型,所以这个方法对 IntegerLongDouble 类型都生效。但是 Random 类只能生成基本类型 intlongdouble 的流。幸运的是, boxed() 流操作将会自动地把基本类型包装成为对应的装箱类型,从而使得 show() 能够接受流。

我们可以使用 Random 为任意对象集合创建 Supplier。如下是一个文本文件提供字符串对象的例子。

Cheese.dat 文件内容:

// streams/Cheese.dat

Not much of a cheese shop really, is it?

Finest in the district, sir.

And what leads you to that conclusion?

Well, it’s so clean.

It’s certainly uncontaminated by cheese.

我们通过 File 类将 Cheese.dat 文件的所有行读取到 List<String> 中。代码示例:

// streams/RandomWords.java

import java.util.*;

import java.util.stream.*;

import java.util.function.*;

import java.io.*;

import java.nio.file.*;

public class RandomWords implements Supplier {

List words = new ArrayList<>();

Random rand = new Random(47);

RandomWords(String fname) throws IOException {

List lines = Files.readAllLines(Paths.get(fname));

// 略过第一行

for (String line : lines.subList(1, lines.size())) {

for (String word : line.split("[ .?,]+"))

words.add(word.toLowerCase());

}

}

public String get() {

return words.get(rand.nextInt(words.size()));

}

@Override

public String toString() {

return words.stream()

.collect(Collectors.joining(" "));

}

public static void main(String[] args) throws Exception {

System.out.println(

Stream.generate(new RandomWords(“Cheese.dat”))

.limit(10)

.collect(Collectors.joining(" ")));

}

}

输出结果:

it shop sir the much cheese by conclusion district is

在这里你可以看到更为复杂的 split() 运用。在构造器中,每一行都被 split() 通过空格或者被方括号包裹的任意标点符号进行分割。在结束方括号后面的 + 代表 + 前面的东西可以出现一次或者多次。

我们注意到在构造函数中循环体使用命令式编程(外部迭代)。在以后的例子中,你甚至会看到我们如何消除这一点。这种旧的形式虽不是特别糟糕,但使用流会让人感觉更好。

toString() 和主方法中你看到了 collect() 收集操作,它根据参数来组合所有流中的元素。

当你使用 Collectors.joining(),你将会得到一个 String 类型的结果,每个元素都根据 joining() 的参数来进行分割。还有许多不同的 Collectors 用于产生不同的结果。

在主方法中,我们提前看到了 Stream.generate() 的用法,它可以把任意 Supplier<T> 用于生成 T 类型的流。

[](()int 类型的范围

IntStream 类提供了 range() 方法用于生成整型序列的流。编写循环时,这个方法会更加便利:

// streams/Ranges.java

import static java.util.stream.IntStream.*;

public class Ranges {

public static void main(String[] args) {

// 传统方法:

int result = 0;

for (int i = 10; i < 20; i++)

result += i;

System.out.println(result);

// for-in 循环:

result = 0;

for (int i : range(10, 20).toArray())

result += i;

System.out.println(result);

// 使用流:

System.out.println(range(10, 20).sum());

}

}

输出结果:

145

145

145

在主方法中的第一种方式是我们传统编写 for 循环的方式;第二种方式,我们使用 range() 创建了流并将其转化为数组,然后在 for-in 代码块中使用。但是,如果你能像第三种方法那样全程使用流是更好的。我们对范围中的数字进行求和。在流中可以很方便的使用 sum() 操作求和。

注意 IntStream.range() 相比 onjava.Range.range() 拥有更多的限制。这是由于其可选的第三个参数,后者允许步长大于 1,并且可以从大到小来生成。

实用小功能 repeat() 可以用来替换简单的 for 循环。代码示例:

// onjava/Repeat.java

package onjava;

import static java.util.stream.IntStream.*;

public class Repeat {

public static void repeat(int n, Runnable action) {

range(0, n).forEach(i -> action.run());

}

}

其产生的循环更加清晰:

// streams/Looping.java

import static onjava.Repeat.*;

public class Looping {

static void hi() {

System.out.println(“Hi!”);

}

public static void main(String[] args) {

repeat(3, () -> System.out.println(“Looping!”));

repeat(2, Looping::hi);

}

}

输出结果:

Looping!

Looping!

Looping!

Hi!

Hi!

原则上,在代码中包含并解释 repeat() 并不值得。诚然它是一个相当透明的工具,但结果取决于你的团队和公司的运作方式。

[](()generate()

参照 RandomWords.javaStream.generate() 搭配 Supplier<T> 使用的例子。代码示例:

// streams/Generator.java

import java.util.*;

import java.util.function.*;

import java.util.stream.*;

public class Generator implements Supplier {

Random rand = new Random(47);

char[] letters = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”.toCharArray();

public String get() {

return “” + letters[rand.nextInt(letters.length)];

}

public static void main(String[] args) {

String word = Stream.generate(new Generator())

.limit(30)

.collect(Collectors.joining());

System.out.println(word);

}

}

输出结果:

YNZBRNYGCFOWZNTCQRGSEGZMMJMROE

使用 Random.nextInt() 方法来挑选字母表中的大写字母。Random.nextInt() 的参数代表可以接受的最大的随机数范围,所以使用数组边界是经过深思熟虑的。

如果要创建包含相同对象的流,只需要传递一个生成那些对象的 lambdagenerate() 中:

// streams/Duplicator.java

import java.util.stream.*;

public class Duplicator {

public static void main(String[] args) {

Stream.generate(() -> “duplicate”)

.limit(3)

.forEach(System.out::println);

}

}

输出结果:

duplicate

duplicate

duplicate

如下是在本章之前例子中使用过的 Bubble 类。注意它包含了自己的静态生成器(Static generator)方法。

// streams/Bubble.java

import java.util.function.*;

public class Bubble {

public final int i;

public Bubble(int n) {

i = n;

}

@Override

public String toString() {

return “Bubble(” + i + “)”;

}

private static int count = 0;

public static Bubble bubbler() {

return new Bubble(count++);

}

}

由于 bubbler()Supplier<Bubble> 是接口兼容的,我们可以将其方法引用直接传递给 Stream.generate()

// streams/Bubbles.java

import java.util.stream.*;

public class Bubbles {

public static void main(String[] args) {

Stream.generate(Bubble::bubbler)

.limit(5)

.forEach(System.out::println);

}

}

输出结果:

Bubble(0)

Bubble(1)

Bubble(2)

Bubble(3)

Bubble(4)

这是创建单独工厂类(Separate Factory class)的另一种方式。在很多方面它更加整洁,但是这是一个对于代码组织和品味的问题——你总是可以创建一个完全不同的工厂类。

[](()iterate()

Stream.iterate() 以种子(第一个参数)开头,并将其传给方法(第二个参数)。方法的结果将添加到流,并存储作为第一个参数用于下次调用 iterate(),依次类推。我们可以利用 iterate() 生成一个斐波那契数列。代码示例:

// streams/Fibonacci.java

import java.util.stream.*;

public class Fibonacci {

int x = 1;

Stream numbers() {

return Stream.iterate(0, i -> {

int result = x + i;

x = i;

return result;

});

}

public static void main(String[] args) {

new Fibonacci().numbers()

.skip(20) // 过滤前 20 个

.limit(10) // 然后取 10 个

.forEach(System.out::println);

}

}

输出结果:

6765

10946

17711

28657

46368

75025

121393

196418

317811

514229

斐波那契数列将数列中最后两个元素进行求和以产生下一个元素。iterate() 只能记忆结果,因此我们需要利用一个变量 x 追踪另外一个元素。

在主方法中,我们使用了一个之前没有见过的 skip() 操作。它根据参数丢弃指定数量的流元素。在这里,我们丢弃了前 20 个元素。

[](()流的建造者模式

在建造者设计模式(也称构造器模式)中,首先创建一个 builder 对象,传递给它多个构造器信息,最后执行“构造”。Stream 库提供了这样的 Builder。在这里,我们重新审视文件读取并将其转换成为单词流的过程。代码示例:

// streams/FileToWordsBuilder.java

import java.io.*;

import java.nio.file.*;

import java.util.stream.*;

public class FileToWordsBuilder {

Stream.Builder builder = Stream.builder();

public FileToWordsBuilder(String filePath) throws Exception {

Files.lines(Paths.get(filePath))

.skip(1) // 略过开头的注释行

.forEach(line -> {

for (String w : line.split("[ .?,]+"))

builder.add(w);

});

}

Stream stream() {

return builder.build();

}

public static void main(String[] args) throws Exception {

new FileToWordsBuilder(“Cheese.dat”)

.stream()

.limit(7)

.map(w -> w + " ")

.forEach(System.out::print);

}

}

输出结果:

Not much of a cheese shop really

注意,构造器会添加文件中的所有单词(除了第一行,它是包含文件路径信息的注释),但是其并没有调用 build()。只要你不调用 stream() 方法,就可以继续向 builder 对象中添加单词。

在该类的更完整形式中,你可以添加一个标志位用于查看 build() 是否被调用,并且可能的话增加一个可以添加更多单词的方法。在 Stream.Builder 调用 build() 方法后继续尝试添加单词会产生一个异常。

[](()Arrays

Arrays 类中含有一个名为 stream() 的静态方法用于把数组转换成为流。我们可以重写 interfaces/Machine.java 中的主方法用于创建一个流,并将 execute() 应用于每一个元素。代码示例:

// streams/Machine2.java

import java.util.*;

import onjava.Operations;

public class Machine2 {

public static void main(String[] args) {

Arrays.stream(new Operations[] {

() -> Operations.show(“Bing”),

() -> Operations.show(“Crack”),

() -> Operations.show(“Twist”),

() -> Operations.show(“Pop”)

}).forEach(Operations::execute);

}

}

输出结果:

Bing

Crack

Twist

Pop

new Operations[] 表达式动态创建了 Operations 对象的数组。

stream() 同样可以产生 IntStreamLongStreamDoubleStream

// streams/ArrayStreams.java

import java.util.*;

import java.util.stream.*;

public class ArrayStreams {

public static void main(String[] args) {

Arrays.stream(new double[] { 3.14159, 2.718, 1.618 })

.forEach(n -> System.out.format("%f ", n));

System.out.println();

Arrays.stream(new int[] { 1, 3, 5 })

.forEach(n -> System.out.format("%d ", n));

System.out.println();

Arrays.stream(new long[] { 11, 22, 44, 66 })

.forEach(n -> System.out.format("%d ", n));

System.out.println();

// 选择一个子域:

Arrays.stream(new int[] { 1, 3, 5, 7, 15, 28, 37 }, 3, 6)

.forEach(n -> System.out.format("%d ", n));

}

}

输出结果:

3.141590 2.718000 1.618000

1 3 5

11 22 44 66

7 15 28

最后一次 stream() 的调用有两个额外的参数。第一个参数告诉 stream() 从数组的哪个位置开始选择元素,第二个参数用于告知在哪里停止。每种不同类型的 stream() 都有类似的操作。

[](()正则表达式

Java 的正则表达式将在[字符串](()这一章节详细介绍。Java 8 在 java.util.regex.Pattern 中增加了一个新的方法 splitAsStream()。这个方法可以根据传入的公式将字符序列转化为流。但是有一个限制,输入只能是 CharSequence,因此不能将流作为 splitAsStream() 的参数。

我们再一次查看将文件处理为单词流的过程。这一次,我们使用流将文件分割为单独的字符串,接着使用正则表达式将字符串转化为单词流。

// streams/FileToWordsRegexp.java

import java.io.*;

import java.nio.file.*;

import java.util.stream.*;

import java.util.regex.Pattern;

public class FileToWordsRegexp {

private String all;

public FileToWordsRegexp(String filePath) throws Exception {

all = Files.lines(Paths.get(filePath))

.skip(1) // First (comment) line

.collect(Collectors.joining(" "));

}

public Stream stream() {

return Pattern

.compile("[ .,?]+").splitAsStream(all);

}

public static void

main(String[] args) throws Exception {

FileToWordsRegexp fw = new FileToWordsRegexp(“Cheese.dat”);

fw.stream()

.limit(7)

.map(w -> w + " ")

.forEach(System.out::print);

fw.stream()

.skip(7)

.limit(2)

.map(w -> w + " ")

.forEach(System.out::print);

}

}

输出结果:

Not much of a cheese shop really is it

在构造器中我们读取了文件中的所有内容(跳过第一行注释,并将其转化成为单行字符串)。现在,当你调用 stream() 的时候,可以像往常一样获取一个流,但这次你可以多次调用 stream() 在已存储的字符串中创建一个新的流。这里有个限制,整个文件必须存储在内存中;在大多数情况下这并不是什么问题,但是这损失了流操作非常重要的优势:

  1. 流“不需要存储”。当然它们需要一些内部存储,但是这只是序列的一小部分,和持有整个序列并不相同。

  2. 它们是懒加载计算的。

幸运的是,我们稍后就会知道如何解决这个问题。

[](()中间操作


中间操作用于从一个流中获取对象,并将对象作为另一个流从后端输出,以连接到其他操作。

[](()跟踪和调试

peek() 操作的目的是帮助调试。它允许你无修改地查看流中的元素。代码示例:

// streams/Peeking.java

class Peeking {

public static void main(String[] args) throws Exception {

FileToWords.stream(“Cheese.dat”)

.skip(21)

.limit(4)

.map(w -> w + " ")

.peek(System.out::print)

.map(String::toUpperCase)

.peek(System.out::print)

.map(String::toLowerCase)

.forEach(System.out::print);

}

}

输出结果:

Well WELL well it IT it s S s so SO so

FileToWords 稍后定义,但它的功能实现貌似和之前我们看到的差不多:产生字符串对象的流。之后在其通过管道时调用 peek() 进行处理。

因为 peek() 符合无返回值的 Consumer 函数式接口,所以我们只能观察,无法使用不同的元素来替换流中的对象。

[](()流元素排序

Randoms.java 中,我们熟识了 sorted() 的默认比较器实现。其实它还有另一种形式的实现:传入一个 Comparator 参数。代码示例:

// streams/SortedComparator.java

import java.util.*;

public class SortedComparator {

public static void main(String[] args) throws Exception {

FileToWords.stream(“Cheese.dat”)

.skip(10)

.limit(10)

.sorted(Comparator.reverseOrder())

.map(w -> w + " ")

.forEach(System.out::print);

}

}

输出结果:

you what to the that sir leads in district And

sorted() 预设了一些默认的比较器。这里我们使用的是反转“自然排序”。当然你也可以把 Lambda 函数作为参数传递给 sorted()

[](()移除元素

  • distinct():在 Randoms.java 类中的 distinct() 可用于消除流中的重复元素。相比创建一个 Set 集合,该方法的工作量要少得多。

  • filter(Predicate):过滤操作会保留与传递进去的过滤器函数计算结果为 true 的元素。

在下例中,isPrime() 作为过滤器函数,用于检测质数。

import java.util.stream.*;

import static java.util.stream.LongStream.*;

public class Prime {

public static Boolean isPrime(long n) {

return rangeClosed(2, (long)Math.sqrt(n))

.noneMatch(i -> n % i == 0);

}

public LongStream numbers() {

return iterate(2, i -> i + 1)

.filter(Prime::isPrime);

}

public static void main(String[] args) {

new Prime().numbers()

.limit(10)

.forEach(n -> System.out.format("%d ", n));

System.out.println();

new Prime().numbers()

.skip(90)

.limit(10)

.forEach(n -> System.out.format("%d ", n));

}

}

输出结果:

2 3 5 7 11 13 17 19 23 29

467 479 487 491 499 503 509 521 523 541

rangeClosed() 包含了上限值。如果不能整除,即余数不等于 0,则 noneMatch() 操作返回 true,如果出现任何等于 0 的结果则返回 falsenoneMatch() 操作一旦有失败就会退出。

[](()应用函数到元素

  • map(Function):将函数操作应用在输入流的元素中,并将返回值传递到输出流中。

  • mapToInt(ToIntFunction):操作同上,但结果是 IntStream

  • mapToLong(ToLongFunction):操作同上,但结果是 LongStream

  • mapToDouble(ToDoubleFunction):操作同上,但结果是 DoubleStream

在这里,我们使用 map() 映射多种函数到一个字符串流中。代码示例:

// streams/FunctionMap.java

import java.util.*;

import java.util.stream.*;

import java.util.function.*;

class FunctionMap {

static String[] elements = { “12”, “”, “23”, “45” };

static Stream

testStream() {

return Arrays.stream(elements);

}

static void test(String descr, Function<String, String> func) {

System.out.println(" —( " + descr + " )—");

testStream()

.map(func)

.forEach(System.out::println);

}

public static void main(String[] args) {

test(“add brackets”, s -> “[” + s + “]”);

test(“Increment”, s -> {

try {

return Integer.parseInt(s) + 1 + “”;

}

catch(NumberFormatException e) {

return s;

}

}

);

test(“Replace”, s -> s.replace(“2”, “9”));

test(“Take last digit”, s -> s.length() > 0 ?

s.charAt(s.length() - 1) + “” : s);

}

}

输出结果:

—( add brackets )—

[12]

[]

[23]

[45]

—( Increment )—

13

24

46

—( Replace )—

19

93

45

—( Take last digit )—

2

3

5

在上面的自增示例中,我们使用 Integer.parseInt() 尝试将一个字符串转化为整数。如果字符串不能转化成为整数就会抛出 NumberFormatException 异常,我们只须回过头来将原始字符串放回到输出流中。

在以上例子中,map() 将一个字符串映射为另一个字符串,但是我们完全可以产生和接收类型完全不同的类型,从而改变流的数据类型。下面代码示例:

// streams/FunctionMap2.java

// Different input and output types (不同的输入输出类型)

import java.util.*;

import java.util.stream.*;

class Numbered {

final int n;

Numbered(int n) {

this.n = n;

}

@Override

public String toString() {

return “Numbered(” + n + “)”;

}

}

class FunctionMap2 {

public static void main(String[] args) {

Stream.of(1, 5, 7, 9, 11, 13)

.map(Numbered::new)

.forEach(System.out::println);

}

}

输出结果:

Numbered(1)

Numbered(5)

Numbered(7)

Numbered(9)

Numbered(11)

Numbered(13)

我们将获取到的整数通过构造器 Numbered::new 转化成为 Numbered 类型。

如果使用 Function 返回的结果是数值类型的一种,我们必须使用合适的 mapTo数值类型 进行替代。代码示例:

// streams/FunctionMap3.java

// Producing numeric output streams( 产生数值输出流)

import java.util.*;

import java.util.stream.*;

class FunctionMap3 {

public static void main(String[] args) {

Stream.of(“5”, “7”, “9”)

.mapToInt(Integer::parseInt)

.forEach(n -> System.out.format("%d ", n));

System.out.println();

Stream.of(“17”, “19”, “23”)

.mapToLong(Long::parseLong)

.forEach(n -> System.out.format("%d ", n));

System.out.println();

Stream.of(“17”, “1.9”, “.23”)

.mapToDouble(Double::parseDouble)

.forEach(n -> System.out.format("%f ", n));

}

}

输出结果:

5 7 9

17 19 23

17.000000 1.900000 0.230000

遗憾的是,Java 设计者并没有尽最大努力去消除基本类型。

[](()在 map() 中组合流

假设现有一个传入的元素流,并且打算对流元素使用 map() 函数。现在你已经找到了一些可爱并独一无二的函数功能,但问题来了:这个函数功能是产生一个流。我们想要产生一个元素流,而实际却产生了一个元素流的流。

flatMap() 做了两件事:

  • 将产生流的函数应用在每个元素上(与 map() 所做的相同)

  • 然后将每个流都扁平化为元素

因而最终产生的仅是元素。

flatMap(Function):当 Function 产生流时使用。

flatMapToInt(Function):当 Function 产生 IntStream 时使用。

flatMapToLong(Function):当 Function 产生 LongStream 时使用。

flatMapToDouble(Function):当 Function 产生 DoubleStream 时使用。

为了弄清其工作原理,我们从传入一个刻意设计的函数给 map() 开始。该函数接受一个整数并产生一个字符串流:

我们天真地希望能够得到字符串流,但实际得到的却是“Head”流的流。

可使用 flatMap() 解决:

从map返回的每个流都会自动扁平为组成它的字符串。

现在从一个整数流开始,然后使用每个整数去创建更多的随机数。

concat()以参数顺序组合两个流。 如此,我们在每个随机 Integer 流的末尾添加一个 -1 作为标记。你可以看到最终流确实是从一组扁平流中创建的。

因为 rand.ints() 产生的是一个 IntStream,所以必须使用 flatMap()concat()of() 的特定整数形式。

将文件划分为单词流。

最后使用到的是 FileToWordsRegexp.java,它的问题是需要将整个文件读入行列表中 —— 显然需要存储该列表。而我们真正想要的是创建一个不需要中间存储层的单词流。

下面,我们再使用 flatMap() 来解决这个问题:

stream() 现在是个静态方法,因为它可自己完成整个流创建过程。

注意\\W+ 是一个正则表达式,表示非单词字符,+ 表示可出现一或多次。小写形式的 \\w 表示“单词字符”。

之前遇到的问题是 Pattern.compile().splitAsStream() 产生的结果为流,这意味着当只想要一个简单的单词流时,在传入的行流(stream of lines)上调用 map() 会产生一个单词流的流。

好在 flatMap() 可将元素流的流扁平化为一个简单的元素流。或者,可使用 String.split() 生成一个数组,其可以被 Arrays.stream() 转化成为流:

.flatMap(line -> Arrays.stream(line.split("\W+"))))

有了真正的、而非 FileToWordsRegexp.java 中基于集合存储的流,我们每次使用都必须从头创建,因为流不能被复用:

System.out.format() 中的 %s 表明参数为 String 类型。

[](()Optional类


若在一个空流取元素会发生什么?我们喜欢为了“happy path”而将流连接起来,并假设流不会被中断。在流中放置 null 就是个很好的中断方法。那么是否有某种对象,可作为流元素的持有者,即使查看的元素不存在也能友好地提示我们(即不会粗暴地抛异常)?

Optional 就可以。一些标准流操作返回 Optional 对象,因为它们并不能保证预期结果一定存在

  • findFirst()

返回一个包含第一个元素的 Optional 对象,若流为空则返回 Optional.empty

  • findAny()

返回包含任意元素的 Optional 对象,若流为空则返回 Optional.empty

  • max()min()

返回一个包含最大值或者最小值的 Optional 对象,若流为空则返回 Optional.empty

reduce() 不再以 identity 形式开头,而是将其返回值包装在 Optional 中。(identity 对象成为其他形式的 reduce() 的默认结果,因此不存在空结果的风险)

对于数字流 IntStreamLongStreamDoubleStreamaverage() 会将结果包装在 Optional 以防止流为空。

以下是对空流进行所有这些操作的简单测试:

class OptionalsFromEmptyStreams {

public static void main(String[] args) {

System.out.println(Stream.empty()

.findFirst());

System.out.println(Stream.empty()

.findAny());

System.out.println(Stream.empty()

.max(String.CASE_INSENSITIVE_ORDER));

System.out.println(Stream.empty()

.min(String.CASE_INSENSITIVE_ORDER));

System.out.println(Stream.empty()

.reduce((s1, s2) -> s1 + s2));

System.out.println(IntStream.empty()

.average());

}

}

Optional.empty

Optional.empty

Optional.empty

Optional.empty

Optional.empty

OptionalDouble.empty

当流为空的时候你会获得一个 Optional.empty 对象,而不是抛异常。OptionaltoString() 方法可以用于展示有用信息。

空流是通过 Stream.<String>empty() 创建的。如果你在没有任何上下文环境的情况下调用 Stream.empty(),Java 并不知道它的数据类型;这个语法解决了这个问题。如果编译器拥有了足够的上下文信息,比如:

Stream s = Stream.empty();

就可以在调用 empty() 时推断类型。

Optional 的两个基本用法:

class OptionalBasics {

static void test(Optional optString) {

if(optString.isPresent())

System.out.println(optString.get());

else

System.out.println(“Nothing inside!”);

}

public static void main(String[] args) {

test(Stream.of(“Epithets”).findFirst());

test(Stream.empty().findFirst());

}

}

Epithets

Nothing inside!

当你接收到 Optional 对象时,应首先调用 isPresent() 检查其中是否包含元素。如果存在,可使用 get() 获取。

[](()便利函数

有许多便利函数可以解包 Optional ,这简化了上述“对所包含的对象的检查和执行操作”的过程:

  • ifPresent(Consumer):当值存在时调用 Consumer,否则什么也不做。

  • orElse(otherObject):如果值存在则直接返回,否则生成 otherObject

  • orElseGet(Supplier):如果值存在则直接返回,否则使用 Supplier 函数生成一个可替代对象。

  • orElseThrow(Supplier):如果值存在直接返回,否则使用 Supplier 函数生成一个异常。

如下是针对不同便利函数的简单演示:

public class Optionals {

static void basics(Optional optString) {

if(optString.isPresent())

System.out.println(optString.get());

else

System.out.println(“Nothing inside!”);

}

static void ifPresent(Optional optString) {

optString.ifPresent(System.out::println);

}

static void orElse(Optional optString) {

System.out.println(optString.orElse(“Nada”));

}

static void orElseGet(Optional optString) {

System.out.println(

optString.orElseGet(() -> “Generated”));

}

static void orElseThrow(Optional optString) {

try {

System.out.println(optString.orElseThrow(

() -> new Exception(“Supplied”)));

} catch(Exception e) {

System.out.println("Caught " + e);

}

}

static void test(String testName, Consumer<Optional> cos) {

System.out.println(" === " + testName + " === ");

cos.accept(Stream.of(“Epithets”).findFirst());

cos.accept(Stream.empty().findFirst());

}

public static void main(String[] args) {

test(“basics”, Optionals::basics);

test(“ifPresent”, Optionals::ifPresent);

test(“orElse”, Optionals::orElse);

test(“orElseGet”, Optionals::orElseGet);

test(“orElseThrow”, Optionals::orElseThrow);

}

}

=== basics ===

Epithets

Nothing inside!

=== ifPresent ===

Epithets

=== orElse ===

Epithets

Nada

=== orElseGet ===

Epithets

Generated

=== orElseThrow ===

Epithets

Caught java.lang.Exception: Supplied

test() 通过传入所有方法都适用的 Consumer 来避免重复代码。

orElseThrow() 通过 catch 关键字来捕获抛出的异常。

[](()创建 Optional

当我们在自己的代码中加入 Optional 时,可以使用下面 3 个静态方法:

  • empty():生成一个空 Optional

  • of(value):将一个非空值包装到 Optional 里。

  • ofNullable(value):针对一个可能为空的值,为空时自动生成 Optional.empty,否则将值包装在 Optional 中。

代码示例:

class CreatingOptionals {

static void test(String testName, Optional opt) {

System.out.println(" === " + testName + " === ");

System.out.println(opt.orElse(“Null”));

}

public static void main(String[] args) {

test(“empty”, Optional.empty());

test(“of”, Optional.of(“Howdy”));

try {

test(“of”, Optional.of(null));

} catch(Exception e) {

System.out.println(e);

}

test(“ofNullable”, Optional.ofNullable(“Hi”));

test(“ofNullable”, Optional.ofNullable(null));

}

}

=== empty ===

Null

=== of ===

Howdy

java.lang.NullPointerException

=== ofNullable ===

Hi

=== ofNullable ===

Null

我们不能通过传递 nullof() 来创建 Optional 对象。最安全的方法是, 使用 ofNullable() 来优雅地处理 null

[](()Optional 对象操作

当我们的流管道生成了 Optional 对象,如下方法可使得 Optional 的后续能做更多操作:

  • filter(Predicate):将 Predicate 应用于 Optional 中的内容并返回结果。当 Optional 不满足 Predicate 时返回空。如果 Optional 为空,则直接返回。

  • map(Function):如果 Optional 不为空,应用 FunctionOptional 中的内容,并返回结果。否则直接返回 Optional.empty

  • flatMap(Function):同 map(),但是提供的映射函数将结果包装在 Optional 对象中,因此 flatMap() 不会在最后进行任何包装。

以上方法都不适用于数值型 Optional

一般来说,流的 filter() 会在 Predicate 返回 false 时移除流元素。

Optional.filter() 在失败时不会删除 Optional,而是将其保留下来,并转化为空。

class OptionalFilter {

static String[] elements = {

“Foo”, “”, “Bar”, “Baz”, “Bingo”

};

static Stream testStream() {

return Arrays.stream(elements);

}

static void test(String descr, Predicate pred) {

System.out.println(" —( " + descr + " )—");

for(int i = 0; i <= elements.length; i++) {

System.out.println(

testStream()

.skip(i)

.findFirst()

.filter(pred));

}

}

public static void main(String[] args) {

test(“true”, str -> true);

test(“false”, str -> false);

test(“str != “””, str -> str != “”);

test(“str.length() == 3”, str -> str.length() == 3);

test(“startsWith(“B”)”,

str -> str.startsWith(“B”));

}

}

即使输出看起来像流,特别是 test() 中的 for 循环。每一次的 for 循环时重新启动流,然后根据 for 循环的索引跳过指定个数的元素,这就是它最终在流中的每个连续元素上的结果。接下来调用 findFirst() 获取剩余元素中的第一个元素,结果会包装在 Optional 中。

注意,不同于普通 for 循环,这里的索引值范围并不是 i < elements.length, 而是 i <= elements.length。所以最后一个元素实际上超出了流。方便的是,这将自动成为 Optional.empty

map() 一样 , Optional.map() 应用于函数。它仅在 Optional 不为空时才应用映射函数,并将 Optional 的内容提取到映射函数。代码示例:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值